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Stats Space This chapter covers only state-space methods.

Chapter Objectives
In this chapter you will learn the following:

m How 1o design a state-feedback controller using pole placement to meet
transient response specifications

m  How to design an observer for systems where the states are not available to
the controller

m How to design steady-state error characteristics for systems represented in
state space

Case Study Objectives

You will be able to demonstrate your knowledge of the chapter objectives with
case studies as follows:

® Given the antenna azimuth position control system shown on the front
endpapers, you will be able to specify all closed-loop poles and then design a
state-feedback controller to meet transient response specifications.

m  Given the antenna azimuth position control system shown on the front
endpapers, you will be able to design an observer to estimate the states.

m Given the antenna azimuth position control system shown on the front
endpapers, you will be able to combine the controller and observer designs
into a viable compensator for the system.
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12.1 Introduction

Chapter 3 introduced the concepts of state-space analvsis and system modeling. We
showed that state-space methods, like transform methods, are simply tools for an-
alyzing and designing feedback control systems. However, state-space techniques
can be applied to a wider class of systems than transform methods. Systems with
nonlinearities, such as that shown in Figure 12,1, and multiple-input, muttiple-
oulput systems are just two of the candidates for the state-space approach. In this
book, however, we apply the approach only to linear systems.

In Chapters 9 and 11 we applied frequency domain methods to system design.
The basic design technique is to create a compensator in cascade with the plant
or in the feedback path that has the correct additional poles and zeros to yield a
desired transient response and steady-state error

One of the drawbacks of frequency domain methods of design, using either root
locus or frequency response techniques, is that after designing the location of the
dominant second-order pair of poles, we keep our fingers crossed, hoping that the
higher-order poles do not affect the second-order approximation. What we would
like 1¢ he able to do is specity aif closed-loop poles of the higher-order system. Fre-
quency domain methods of design do not allow us to specify all poles in systems
of order higher than two because they do not allow for a sufficient number of un-
known parameters to place all of the closed-loop poles uniquely. One gain to adjust,
or compensator pole and zero to select, does not yield a sufficient number of param-
eters to place all the closed-loop poles at desired locations. Remember, to place n
unknown quantities, you need » adjustable parameters. State-space methods solve
this problem by introducing into the system (1) other adjustable parameters and



728

Chapter 12 Design via State Space

{2) the techmique for finding these parameter values, so that we can properly place
all poles of the closed-loop system. !

On the other hand, state-space methods do not allow the specification of closed-
loop zero locations, which frequency domain methods do allow through placement
of the lead compensator zere. This is a disadvantage of state-space methods, since
the location of the zero does affect the transient response. Also. a state-space design
may prove to be very sensitive to parameter changes.

Finally, there is a wide range of computational support for state-space methods;
many software packages support the matrix algebra required by the design process.
However, as mentioned before, the advantages of computer support are balanced
by the loss of graphic insight into a design problem that the freguency domain
methods yield.

This chapter should be considered only an introduction to state-space design:
we introduce one state-space design technigue and apply it only to linear systems.
Advanced study is required to apply state-space techniques to the design of systems
beyond the scope of this textbook.

12.2 Controller Design

This section shows how to introduce additional parameters nto a system so that
we can comntrol the location of all closed-loop poles. An nth-order feedback control
system has an nth-order closed-loop characteristic equation of the form

S 4G '+t estag=0 (z.n

Since the coefficient of the highest power of s is unity, there are n coefficients whose
values determine the system’s closed-loop pole Iocations. Thus, if we can introduce
n adjustable parameters into the system and relate them to the coefficients in Eq.
(12.1), all of the poles of the closed-lcop system can be set to any desired location.

Topology for Pole Placement
In order to lay the groundwork for the approach, consider a plant represented m
state space by

x = Ax + Bu (12.2a)
y=0Cx (12.2b)

and shown pictorially in Figure 12.2(a). where light lines are scalars and the heavy
lines are vectors.

In a typical feedback control system, the output, ¥, is fed back to the summing
junctien. Itis now that the topology of the design changes. Instead of feeding back

"This is an advaniage as long as we know where to place the higher-order poles. which is not
always the case. One course of action is to place the higher-order poles far from the domunant
second-order poles or near a closed-loop zero to keep the second-order system design valid. An-
other approach 1s to use optimal control concepts, which are beyond the scope of this text.
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¥, what if we feed back all of the state variables? If each state variable is fed back to
the control, &, through a gain, k;, there would be » gains, &;, that could be adjusted
to yield the required closed-loop pole values. The feedback through the gains, &;,
is represented in Figure 12.2(b) by the feedback vector — K.

The state equations for the closed-toop system of Figure 12.2(b) can be wntten
by inspection as

X Ax+ By Ax+B(-Kx+r =(A BKjx+ B (12.3a)
y - Ox {12.3b)

Before continuing, you should have a good idea of how the feedback system of
Figure 12.2(b} is actually implemented. As an ¢xample, assume a plant signal-flow
graph in phase-variable form, as shown in Figure 12.3(a). Each state variable is
then fed back to the plant’s input, #, through a gain, &,, as shown in Figure 12.3(b).
Although we will cover other representations later in the chapter, the phase-variable
form, with its typical lower companion system matrix, or the controller canonical
form, with its typical upper companion system matrix, yields the simplest evalua-
tion of the feedback gains. In the ensuing discussion, we use the phase-variable form
to develop and demonstrate the concepts. End-of-chapter problems will give you
an opportunity to develop and test the concepts for the controller canonical form.

The design of state-variable feedback for closed-loop pole placement consists
of equating the characteristic equation of a closed-loop system, such as that shown
in Figure 12.3(b), to a desired characteristic equation and then finding the values
of the feedback gains, %,.

If a plant like that shown in Figure 12.3(a) is of high order and not represented
in phase-variable or controller canonical form, the solution for the &,’s can be intri-
cate. Thus, it is advisable to transform the system to either of these forms, design the
k;’s, and then transform the system back to its original representation. We perform
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Figure 12.3

a. Phase-variable
representabon for
plant;

b. plant with state-
variable feedback

()

this conversion in Section 12.4, where we develop a method for performing the
transformations. Until then, let us direct our attention to plants represented in phase-
variable form.

Pole Placement for Plants in Phase-Variable Form
To apply pole-placement methodology to plants represented in phase-variable form.
we take the following steps:

1. Represent the plant in phase-variable form
2. Feed back each phase variable to the input of the plant through a gain, ;.

3. Find the characteristic equation for the closed-locp system represented in
step 2.
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4. Decide upon all closed-loop pole locations and determine an equivalent charac-
teristic equation.

5. Equate like coefficients of the charactenstic equations from steps 3 and 4 and
solve for k;.

Following these steps, the phase-variable representation of the plant is given by
Eq- {12.2). with

0 1 0 0 0

N K I R I

—ay —q —.ﬂz —lp—| 1
C=[a c - ol (12.4)

The charactenistic equation of the plant is thus
St S e rastay =0 (12.5)
Now form the closed-loop system by feeding back each state variable to u, forming
n=—Kx (12.6)
where
K=k kK -+ k] (12.7)

The k;’s are the phase variables’ feedback gains.
Using Eq. (12.3a) with Egs. (12.4) and (12.7), the system matrix, A -~ BK, for
the closed-loop system is

0 1 0 . 0
0 1 --
A BK = : O : : 0
—(ap+k) —(m+k) —(ay+k) -~ —(a—+k)

(12.8)

Since Eq- (12.8) is in phase-variable form, the characreristic equation of the closed-
loop system can be written by mspection as

det(sI — (A -~ BK)) = 5" + (@, + k,)s" ! + (@p_2 + k,_{)s" 2
+-(@thk)stig+k)=0 (12.9)

Notice the relationship between Egs. (12.5) and (12.9). For plants represented
in phase-variable form, we can write by inspection the closed-loop characteristic
equation from the open-loop characteristic equation by adding the appropriate &; to
cach coefficient.
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Example 12.1

Now assume that the desired characteristic equation for proper pole place-
ment is

S ddy St d oyt st dy = O (12.10})

where the d;’s are the desired coefficients. Equating Egs. (12.9) and (12.10), we
obtain

d.' =ﬂ,+ki+| i =012.. ,H—]. (1211)
from which
ko =d—aq (12.12)

Now that we have found the denominator of the closed-loop transfer func-
tion, let us find the numerator. For systers represented in phase-variable form, we
learned that the numerator polynomial is formed from the coefficients of the output
coupling matrix, C. Since Figures 12.3(a) and (&) are both in phase-variable form
and have the same output coupling matrix, we conclude that the numerators of their
transfer functions are the same. Let us look at a design example.

Controller design for phase-variable form

Problem Given the plant

205+ 59)
o) = T D6+ 9 (12.13)

design the phase-variable feedback gains to yield 9.5% overshoot and a settling
time of 0.74 second.

Solution 'We begin by calculating the desired closed-loop characteristic equation.
Using the transient response requirements, the closed-loop poles are —5.4 + j 7.2.
Since the system is third-order, we must select another closed-loop pole The
closed-loop system will have a zero at —35, the same as the open-loop system. We
could select the third closed-loop pole to cancel the closed-loop zero. However, to
demonstrate the effect of the third pole and the design process, including the need
for simulation, let us choose —5.1 as the location of the third closed-loop pole.

Now draw the signal-flow diagram for the plant. The resultis shown in Figure
12.4{a). Next feed back all state variables to the control, 1, through gains k,, as
shown 1n Figure 12.4(b).

Writing the closed-loop system's state equations from Figure 12.4(b), we have

) 1 0 0
x=| 0 0 1 x+|0]|r (12.14a)
k1 —@t+k) —(5+ky) 1

y=[100 20 0|x (12.14b)
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b

Comparing Eq. (12.14) to Eq. (12.3), we identify the closed-loop system matrix as

0 1 0
A BK=]|0 0 1 (12.15)
-k -4+ kzj -5+ k3]

To find the closed-loop system’s characteristic equation, form
detsT —(A BK) = +G5+k)s+@thlk+k =0 (12.16)

This equation must match the desired characteristic equation,

£ + 15957 + 136.085 + 413.1 = 0 (12.17)
formed from the poles —54 + j7.2, —5.4 — j7.2, and —5.]1, which were previ-
ously determined.

Equating the coefficients of Egs. (12.16) and (12.17), we obtain
ki =431, k =13208; k=109 (12.18)

Finally, the zero term of the closed-loop transfer function is the same as the
zero term of the open-loop system, or (s + 5).
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Figura 125

Simulabon of closed-

loop system of
Example 121

MATLAB

Using Eq. (12.14), we obtain the following state-space representation of the
closed-loop system:

0 1 0 0

X = 0 0 1 |x+|ofr (12.193)
—413.1 —13608 —159 1

y=[100 20 Olx (12.19b)

The transfer function 15

20(s +3)

1) = 15957 + 13608 + 4131

(12.20)

Figure 12.5, a simulation of the closed-loop system, shows 11.5% overshoot
and a setiling time of 0.8 second. A redesign with the third pole canceling the zero
at —5 will yield performance equal to the requirements.
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Since the steady-state response approaches (.24 instead of umnity, there is a large

steady-state error. Design technigues to reduce this ermror are discussed in Section
12.8.

Students who are using MATLAB should now run chl2pl in Appendix B. You will learn how
to use MATLAB to design a controller for phase variables using pole placement. MATLAB will
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plot the step response of the designed system. This exercise solves Example 12.1 using
MATLAB.

Skill-Assessrnent Exercise 12.1

o Contrsl Problem For the plant
Salutive

_ 100(s +10)
Gls) = s(s+3}s+ 12)

represented in the state space in phase-variable form by

0 1 0 0
X=Ax+Bu=|0 0 1|x+|0]|u

0 -36 -—15 1
¥y =Cx =[1000 100 (}]x

design the phase-variable feedback gains to yield 5% overshoot and a peak time
of 0.3 second.

Answer K = [2094 373.1 14.97]
The complete solution is on the accompanying CD-ROM.

In this section we showed how to design feedback gains for plants represented
in phase-variable form in order to place all of the closed-loop system’s poles at
desired locations on the s-plane. On the surface it appears that the method should
always work for any system. However, this is not the case. The conditions that must
exist in order to umquely place the closed-loop poles where we want them is the
topic of the next section.

12.3 Controllability

Consider the parallel form shown in Figure 12.6(a). To control the pole location
of the closed-loop system, we are saying implicitly that the control signal, &, can
control the behavior of each state variable in x. If any one of the state variables
cannot be controlled by the control #, then we cannot place the poles of the system
where we desire. For example, in Figure 12.6(%), if x, were not controllable by the
control signal and if x; also exhibited an unstable response due to a nonzero initial
condition, there would be no way to effect a state-feedback design to stabilize x,;
x1 would perform in its own way regardless of the control signal, w. Thus, in some
systems, a state-feedback design is not possible.
We now make the following definition based upon the previous discussion:

If an input to a system can be found that takes every state variable from a
desired initial state to a desired final state, the system is said to be controllable;
otherwise, the system is uncontroliable.



736  Chapter 12 Design via State Space

Figure 12.6
Companson of

a. controllable and
b. uncontrollable
systems

Pole placement is a viable design technique only for systems that are controllable.
This section shows how to determine, a priori. whether pole placement is a viable
design technique for a controller.

Controllability by Inspection

We can explore controllability from another viewpoint: that of the state equation
itself. When the system matrix is diagonal, as it is for the parallel form, itis apparent
whether or not the system is controllable. For example, the state equation for Figure

12.6(a) is
—y 0 0 1
X=|0 —a 0 |x+|1| (12.21)
3

0 0 -—a
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or
X = —ayx + u (12.223)
X = —~ @3X7 +u (12.22b)
Xy = ~a3x3+u (12.22¢)

Since each of Egs. (12.22) is independent and decoupled from the rest, the control #
affects each of the state variables. This is controllability from another perspective
Now let us lpok at the state equations for the system of Figure 12.6(5):

—a4 0 0 0
x=|0 —-a 0 [x+]|1]|u (12.23)
0 0 —agg 1
or
X] = —a4x (12.243)
X3 = — ds Xy + u (12.24b)
ki = — agxy + i (12.24¢)

From the state equations in (12.23) or (12.24), we see that state variable x; is not
controlled by the control &. Thus, the system is said to be uncontrollable,

In summary, a system with distinct eigenvalues and a diagonal systern matrix
1s controllable if the input coupling matrix B does not have any rows that are zero.

The Controllability Matrix
Tests for controllability that we have so far explored cannot be used for representa-
tions of the system other than the diagonal or parallel form with distinct eigenvalues.
The problem of visualizing controllability gets more comphicated if the system has
multiple poles, even though it is represented in paralle] form. Further, one cannot
always determine controllability by inspection for systems that are not represented
in parallel form. In other forms the existence of paths from the input to the state
variables is not a criterion for controllability since the equations are not decoupled.

In order to be able to determine controllability or, alternatively, to design state
feedback for a planmt under any representation or choice of state variables, a matrix
can be derived that must have a particular property if all state variables are to be
controlled by the plant input, ». We now state the requirement for controllability.
including the form, property, and name of this matrix.?

An nth-order plant whose state equation is

X = Ax + Bu (12.25)
is completely controllable’ if the matrix

Cu=IB AB A'B --- A" 'B) (12.26)

See the work listed in the Bibliography by Ogata (1990: 699-702) for the denvation.
*Completely controlloble means that 21l state vanables are controllable. This textbook uses con-
trollable 1o mean compietely controllable.
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Figure 12.7
System for
Examnple 12.2

is of rank n, where Caq is called the controllability matrix.* As an example, let us
choose a system represented in paralle] form with multiple roots.

Controlability via the controllability matrix

Problem Given the system of Figure 12.7, represented by a signal-flow diagram,
determine its controllability.

Solution The state equation for the system written from the signal-flow diagramis

-1 1 0 0
x=Ax+Bu=| 0 -1 Olx+|1|u (12.27)
o 0o -2 1

At first st would appear that the system is not controllable because of the zero in

the B matrix. Remember, though, that this configuration leads to uncontrollabslity

only if the poles are real and distinct. In this case we have multiple poles at —1.
The controllability matrix is

0 1 -2
Cv=[B AB AZB]=[1 -1 1 (12.28)
1 2 4

The rank of Cp equals the number of linearly independent rows or columns. The
rank can be found by finding the highest-order square submatrix that is nonsingular.
The determinant of Cpgy = —1. Since the determinant is not zero, the 3 X 3 matnx
is nonsingular, and the rank of Cy is 3. We conclude that the system is controllable
since the rank of Cpy equals the system order. Thus, the poles of the system can be
placed using state-variable feedback design

4See Appendix F on the accompanying CD-ROM for the definitien of rank. For single-input
systems, instead of specifying rank n, we can say that Cy must be nonsingular, possess aninverse,
or have linearly independent rows and columns.
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MATLAB Students who are using MATLAB should now run chlZ2pZ in Appendix B. You will learn how
to use MATLAB to test a system for controllability. This exercise solves Example 12.2 using
MATLAB.

In the previous example we found that even though an element of the input
coupling matrix was zero, the system was controllable. If we look at Figure 12.7,
we can see why. In this figure all of the state variables are driven by the input u.

On the other hand, if we disconnect the input at either dx, dt, dx; /dt, or dxs, dt,
at least one state vanable would not be controllable. To see the effect, let us dis-
connect the mput at dx, ‘dt. This causes the B matrix to become

0
0
1

B= (12.29)

We can see that the system is now uncentrollable, since x; and x; are no longer
controlled by the input. This conclusion is borne out by the controllability matrix,
which is now

0 00
Cu=[B AB AZB|=|0 0 0 (12.30)
1 -2 4

Not only is the determinant of this matrix equal to zero, but so is the determinant of

any 2 X2 submatrix. Thus, the rank of Eq. (12.30} is 1. The system is uncontrollable
because the rank of Cy; is 1, which is less than the order, 3, of the system.

Skill-Assessment Exercise 122
Problem Determine whether the system

—1 1 2 2
X=Ax+Bu=| 0 -1 Six+|1|u
0 3 -4 1

1s controllable.
Answer Controllable

The complete solution is on the accompanying CD-ROM.

In summary, then, pole-placement design through state-variable feedback
is simplified by using the phase-variable form for the plant’s state equations.
However, controllability, the ability for pole-placement design to succeed, can be
visualized best in the parallel form, where the system matrix is diagonal with dis-
tinct roots. In any event, the controllability matrix will always tell the designer
whether the implementation is viable for state-feedback design.

The next section shows how to design state-variable feedback for systems not
represented in phase-variable form. We use the controllability matrix as a tool for
transforming a system to phase-variable form for the design of state-variable feed-
back.
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Figurs 12.8

a. Signal flow
Eraph in cascade
form for Gis) =

10 Hs + 1)is + 2%);
b. systern with state
feedback added

12.4 Aiternative Approaches to Controller Design

Section 12.2 showed how to design state-vanable feedback to yield desired closed-
loop poles. We demonstrated this method using systems represented in phase-
variable form and saw how simple it was o calculate the feedback gains. Many
times the physics of the problem requires fecdback from state variables that are not
phase vanables. For these systems we have some choices for a design methodology.

The first method consists of matching the coefficients of det (sI — (A — BK))
with the coefficients of the desired characteristic equation, which i1s the same
method we used for systems represented in phase vanables. This technique, in
general, leads to difficult calculauons of the feedback gains, especially for higher-
order systems not represented with phase variables. Let us illustrate this technique
with an example.

Controller design by matching coefficients

Problem Given a plant, ¥(s) U(s) — 10 [{(s + D(s + 2)]. design state feedback
for the plant represented in cascade form to yield a 15% overshoot with a settling
time of 0.5 second.

Solution The signal-flow diagram for the plant in cascade form is shown in Figure
12.8(a). Figure 12.8(b) shows the system with state feedback added. Writing the
state equations from Figure 12.8(b), we have

. |2 1 0
X = [—h —(hy + l)]x + [l]r (12.31a)

y=[10 0Olx (12.31b)

| 1
1 x | T 10
u (O U { @, (O
'I.] U
-1 -2

(a}
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where the characteristic equation is
L+ + R+ +2 =0 (12.32)

Using the transient response requirements stated in the problem, we obtain the
desired characteristic equation

£ +165+2395=0 (12.33)

Equating the middle coefficients of Egs. (12.32) and (12.33), we find &k, = 13.
Equating the last coefficients of these equations along with the result for &, yields
ky = 211.5.

The second method consists of transforming the system to phase vanables,
designing the feedback gains, and transforming the designed system back to its
original state-variable representation.” This method requires that we first develop
the transformation between a system and its representation in phase-vanable form.

Assume a plant not represented in phase-variable form.,

z = Az + Bu (12.34a)
y=0Cz (12.34b)

whose controllability matrix 1s
Cu: =B AB A’B --- A" 'B] (12.35)

Assume that the system can be transformed into the phase-variable (x) representa-
tion with the transformation

z = Px (12.36)
Substituting this transformation into Eq. (12.34), we get
X =P 'APx+ P 'Bu (12.37a)
y=CPx (12.37b)
whose controllability matrix is
Cux = |P'B (P'APXP'B) (P 'APY(P-'B) --- (P 'APY" (P 'B)
=[P'B (P 'AP)P 'B) (P 'APXP'AP)YP 'B) --- (P'AP)
(P AP)P'AP) --- (P 'AP)}P'B)
=P '[B AB A'B --- A" 'B (12.38)

Substituting Eq. (12.35) into (12.38) and solving for P, we obtain
P= Cra,Crax : (12 39)

38¢e the discussions of Ackermann’s formula in Franklm (1994) and Ogata (1990), hsted m the
Biblhography.
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Example 12.4

Figure 12.9
Signal flow graph for
plant of Example 12.4

Thus, the transformation matrix, P, can be found from the two controllability
matrices.

After transforming the system to phase variables, we design the feedback gains
as i Section 12.2. Hence, including both feedback and input, u = —Kyx + r.
Eq. (12.37) becomes

X=P'APx—P 'BK.x + P 'Br
=P 'AP- P 'BK,)x + P 'Br (12.404a)
v = CPx (12.40b)

Since this equation is in phase-variable form, the zeros of this closed-loop system
are determined from the polynomial formed from the elements of CP, as explained
in Section 12.2.

Using x = P!z, we transform Eq. (12.40) from phase variables back to the
original representation and get

z=Az-BK,P 'z + Br = (A- BK,P Yz + Br (12.41a)

y=0Cz (1241

Comparing Eq. (12.41) with (12.3), the state variable feedback gain, K;, for the
original system is

K, = K,P' (12.42}

The transfer function of this closed-loop system is the same as the transfer function

for Eq. (12.40), since Egs. (12.40) and (12.41) represent the same systern. Thus, the

zeros of the closed-loop transfer function are the saine as the zeros of the uncom-

pensated plant, based upon the development in Section 12.2. Let us demonstrate
with a design example.

Controller design by transformation

Problem Design a state-variable feedbuck controller to yield a 20.8% overshoot
and a settling time of 4 seconds for a plant,

Gis) = s+ 3

G DE+FD+I) (1243)

that is represented in cascacde form as shown i Figure 12.9,

| -
Jom
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Solution First find the state equations and the controllability matrix. The state
equations written from Fignre 12.9 are

-3 1 0 0

0 0 -1 1

u (12.44)

y=GCz=|-1 1 0|z

from which the controllability matrix is evaluated as

Cvz = [B: A;B, Azsz] =

0 o 1
0 1 -3 (12.45)
1 -1 1
Since the determinant of Cyy, is — 1, the system is controllable.

We now convert the system to phase variables by first finding the characteristic

equation and using this equation to write the phase-variable form. The character-
istic equation, det(sI — A;), is

det(sI—A;) =S +8%+17s+ 10 =0 (12.46)

Using the coefficients of Eq. (12.46) and our knowledge of the phase-vanable form,
we write the phase-variable representation of the system as

0 1 0 0
X=Ax+Bu= 0 0 I{x+|0|u (12.47a)
-10 —17 -8 1
y=[4 1 0]x (12.47b)

The output equation was written using the coefficients of the numerator of Eq.
(12.43), since the transfer function must be the same for the two representations.
The controllability matrix, Cpy,, for the phase-vaniable system is

CMx = [Bx Asz Ain] .

0 O 1
0 1 -8 (12.48)
1 -8 47

Using Eq. (12.39). we can now calculate the transformation matrix between the
two systems as

1 0 0
P=CuCri=|5 1 0 (12.49)
10 7 1

We now design the controller using the phase-variable representation and then
use Eq. (12.49) to transform the design back to the original representation. For
a 20.8% overshoot and a settling time of 4 seconds, a factor of the characteris-
tic equation of the designed closed-loop system is 52 + 25 + 5. Since the closed-
loop zero will be at s = —4, we choose the third closed-loop pole to cancel the
closed-loop zero. Hence, the total characteristic equation of the desired closed-loop
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Figure 12.10
Designed system
with state-variable
feedback for
Example 12.4

systemn is
Dis)=(s+4Us" +25+5) = @ 4+ 62+ 135420 =0  (12.50)

The state equations for the phase-variable form with state-variable feedback
are

0 1 0
X = (Ay — ByK)x = 0 0 1 x (12.51a)
~(10+k,) —(17T+k) —(8+ k)
v=[4 1 0O]x (12.51by

The characteristic equation for Eq. (12.5 I)is
det(sT — (Ax —B;K,)) = s + (8 + k3 )5* + (17 + k205 4+ (10 + ky )

=0 (1252
Comparing Eq. (12.50) with (12.52), we see that
K, = [k.j ke, k_qt] = []0 -4 ~2] (12.53)

Using Eqgs. (12.42) and (12.49). we can transform the controller back to the original
system as

K. =K' =|{-20 10 —2] (12.54)

The final closed-loop system with state-variable feedback is shown in Figure 12.10,
with the input applied as shown.

Let us now verify cur design. The state equations for the designed system
shown in Figure 12.10 with input r are

-3 1 0 0
Z2=(A;-BK)z+Byr =| 0 -2 1lz+ Ofr (12.55a)
20 —10 1 1

y=Cz=1-1 1 0 {(12.55b)
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Using Eq. (3.73) to find the clesed-loop transfer function, we obtain

s+4) 1
) 6524+ 135 4+20 2 +25+ 5 ( '
The requirements for our design have been met.
MATLAB Students who are using MATLAB should now run ch12p3 in Appendix B. You will learn how

to use MATLAB to design a controller for a plant not represented in phase-variable form. You
will see that MATLAB does not require transformation to phasevariable form. This exercise
solves Example 12.4 using MATLAB.

Skill-Assessment Exercise 12.3

3 Contral Problem Design a linear state-feedback controller to yield 20% overshoot and
Solusizn a settling time of 2 seconds for a plant,

(s +6)

€O = Cros+ a6+

thar is represented in state space in cascade form by

—7 1 0 0
Z=Az4+Bu=| 0 -8 Llz+ |0u
0 0 -9 1

y=Cz=[-1 1 Uiz

Answer K, =[-40.23 6224 —14]
The complete solution is on the accompanying CD-ROM.

In this section we saw how to design state-variable feedback for plants not
represented in phase-variable form, Using controllability matrices, we were able
to transform a plant to phase-vanable form, design the controller, and finally trans-
form the controller design back to the plant’s original representation. The design of
the controller relies on the availability of the states for feedback. In the next section
we discuss the design of state-vanable feedback when some or all of the states are
not available.

12.5 Observer Design

Controller design relies upon access to the state variables for feedback through
adjustable gains. This access can be provided by hardware. For example, gyros
can measure position and velocity on a space vehicle. Sometimes it is impracti-
cal to use this hardware for reasons of cost, accuracy, or availability. For exam-
ple, in powered flight of space vehicles, inertial measuring units can be used 1o
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Plans Plant
ouipud. ouiput,
¥ ¥
- Flant EERm— - Plant
r=0 + 7 Estimated r=0 + u
9 gl
+ 3 +
= Observer f———m o1 Observer =
Estimated Estimated
Controller states, Controller stutes,
X X
(@) #)
Estimated Plant
N mutput, output,
] X G + f
— = B f C —y.@..l—
A
Estimated
EITor
L output
To controller
(c)
Figure 12.11
State-feedback desi . . . . e
EreCEbArk BESET  calculate the acceleration. However, their alignment deteriorates with time; thus,
using an observer to - . . .
other means of measuring acceleration may be desirable (Rockwell International,
estimate unavadable e . i
i ] 1984). In other applications, some of the state variables may not be available at
. ] all, or it is too costly to measure them or send them 1o the controller. If the state
Ogsizr_ P variables are not available because of system configuration or cost, it is possible
b closelc;l to estimate the states. Estimated states, rather than actual states, are then fed to
o};semr‘ S the controller. One scheme is shown in Figure 12.11(a). An observer, sometimes

called an estimaror, is used to calculate state variables that are not accessible from
the plant. Here the observer is a model of the plant.
Let us look at the disadvantages of such a configuration. Assume a plant,

€. exploded view of a
closed-oop observer,
showing feedback
arrangement to % = Ax + Bu (12.57a)
reduce state-vanable

eshmation error y=Cx (12.57b)

It
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and an observer.

% = AR + Bu (12.56a)
y=Cx {1258
Subtracting Eqs. (12.58) from (12.57), we obtain
X—% = A(x—X) (12.593)
y—%=C{x—X) (12.59b)

Thus, the dynamics of the difference between the actual and estimated states 18
unforced. and if the plant is stable, this difference, due to differences in initial
state vectors, approaches zero. However, the speed of convergence between the
actual state and the estimated state is the same as the transient response of the plamt
since the characteristic equation for (12.59a) is the same as for (12.57a). Since the
convergence is too slow, we seek a way to speed up the observer and make its
response time much faster than that of the contralled closed-loop system, so that,
effectively, the controller will receive the estimated states instantaneously.

To increase the speed of convergence between the actual and estimated states,
we use feedback, shown conceptually in Figure 12.11(b} and in more detail in Fig-
ure §2.11{¢). The error between the outputs of the plant and the observer is fed back
to the derivatives of the observer’s states. The system corrects to drive this error to
zero. With feedback we can design a desired transient response into the observer
that is much quicker than that of the plant or controlled closed-loop system.

When we implemented the controller, we found that the phase-variable or con-
troller canonical form yielded an easy solution for the controller gains. In designing
an observer, it is the observer canonical form that yields the easy solution for the
observer gains. Figure 12.12(a) shows an example of a third-order plant repre-
sented in cbserver canonical form. In Figure 12.12(b) the plant is conflgured as an
observer with the addition of feedback, as previously described.

The design of the observer is separate from the design of the controller. Similar
io the design of the controller vector, K, the design of the observer consists of
evaluating the constant vector, L, sc that the transient response of the observer is
faster than the response of the controlled loop in order to yield a rapidly updated
estimate of the state vector. We now derive the design methodology.

We will first find the state equations for the error between the actual state vector
and the estimated state vector, (X —%). Then we will find the characteristic equation
for the error system and evaluate the required L to meet a rapid transient response
for the observer.

Writing the state equations of the observer from Figure 12.11(c), we have

£ — AR+Bu+Liy—§ (12.60a)
y=Cx (12.60b)
But the state equations for the plant are
x = Ax + Bu (12.61a)
y — Cx (12.61b)
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Figure 12.12
Third-order observer in
observer canonical
form,

a. before the addtion
of feedback;

b. after the addition of
feedback

(@)

Subtracting Egs. (12.60) from ( 12.61), we obtain
(k- %) = A(x — %) —L(y - §) (12.62a)
O~ =Cx—-%) (12.62b)

where x — & is the error between the actual state vector and the estimated state
vector, and y — 9 is the error between the actual output and the estimated out-
put.

Substituting the outputequation into the state equation, we obtain the state equa-
tion for the error between the estimated state vector and the actual state vector:
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(x— %) = (A—LOX - R) (12.63a)
6-N=Cx-% (12.63b)
Letting ey = (X  X), we have
ex = (A - LC)e, (12.64a)
y—y=Ce {12.64b)

Equation (12.64a)is unforced. If the eigenvalues are all negative, the estimated
state vector error, €, will decay to zero. The design then consists of solving for the
values of L to yield a desired charactenistic equation or response for Egs. (12.64).
The characteristic equation is found from Egs. (12.64) to be

det[Al— (A - L)Y =0 (12.65)

Now we select the eigenvalues of the observer to yield stability and a desired
transient response that is faster than the controlled closed-locp response. These
eigenvalues determine & characteristic equation that we set equal to Eq. (12.65) to
sclve for L.

Let us demonstrate the procedure for an sh-order plant represented in observer
canonical form. We first evaluate A — LC. The form of A, L, and € can be derived
by extrapolating the form of these matrices from a third-order plant, which you can
derive from Figure 12.12. Thus,

—a,y 1 0 0 - 0O I3
—a,2 0 1 0 -~ 0 bL
A-LC = : ot s -l {l 000 0]
- 0 0 0 --- 1 b
—dap 0 00 « 0 I
-—(a,,_. +4) 1 0 O 0|
—a, ;+6L) 0 1 0 0
- : S-S - (12.66)
—(ay+hhy) 0 0 0 - 1
—agp+L) 0 0 0O 0
The characteristic equarion for A -~ LC is
R R S 1) U (- MR 7 D ST (T MY T
+ (ﬂ(} + ln) ={] (126?)

Notice the relationship between Eq. (12.67) and the characteristic equation,
det (sI — A) = 0, for the plant, which is

5" +ﬂ"_[.§‘n_l +ﬂ,,_2$ﬂ_2+ rt+as+a; =0 (|268)

Thus, if desired, Eq. (12.67) can be written by inspection if the plant is repre-
sented in observer canomcal form. We now equate Eq. {12.67) with the desired
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Example 125

closed-loep observer characteristic equation, which is chosen on the basis of a
desired transient response. Assume the desired characteristic equation is

S rd, 8V rdy v dis+dy =0 (12.69)

We can now solve for the /s by equating the coefficients of Egs. (12.67) and
(12.69):

L=dyi—a,; i=12...n (12.70)

Let us demonstrate the design of an observer using the observer canonical form.
In subsequent secticns we will show how to design the observer for other than
observer canonical form,

Observer design for observer canonical form
Problem Design an observer for the plant

(s +4) _ s+ 4
G+DE+HDE+5) S +82+175+10

which 1s represented in observer canonical form. The observer will respond 10
umes faster than the controlled loop designed in Example 12.4.

G(s) =

(12.71)

Solution

1. First represent the estimated plant in observer canonical form. The result is
shown in Fagure 12.13(a).

2. Now form the difference between the plant’s actual outpuy, y, and the observer’s
estimated output, ¥, and add the feedback paths from this difference to the
denvative of each state variable. The result is shown in Figure 12.13(b).

3. Next find the charactenstic polynomial. The state equations for the estunated
plant shown in Fagure 12.13(a) are

: -8 1 0 0

£=AR+Bu-=|-17 0 1|&+]|1|u (12.72a)
-10 0 O 4

p=Cs=[1 0 0% (12.72b)

From Egs. (12.64) and (12.66), the observer error is

-8+ 1 0
ex = (A—LCey =|-(17+85) 0 1]e (12.73)
—(10+41) 0O O
Using Eq. (12.65), we obtain the characteristic polynomial
5+ 8+ )5 + (17 + B)s + (10 + 1) (12.74)

4. Now evaluate the desired polynomial, set the coefficients equal to those of
Eq. (12.74), and solve for the gains, /.. From Eq. (12.50), the closed-loop
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Figure 12,13

a. Signal flow graph
of a system using
observer cancrcal
form variables;

b. addmbonal feedback
to create ohserver

controlled system has dominant second-order poles at —1 * j2. To make our
observer 10 times faster, we design the observer poles to be at —10 + j20. We
select the third pole to be 10 times the real part of the dominant second-order
poles, or —100. Hence, the desired characteristic polynomial is

(s + 100)(s® + 205 + 500} = 5° + 1205F + 25005 + 50,000 (12.75)

Equating Eqs. (12.74) and (12.75), we find I} = 112, &, = 2483, and I; =
49,950.

A simulation of the observer widi an input of r(f) = 100z is shown in Figure
12.14. The nitial conditions of the plant were all zero, and the initial condition of
X1 wus 0.5. Since the dominant pole of the observer is —10 * j 20, the expected
settling time should be about 0.4 second. It is interesting to note the slower
response in Figure 12.14(b), where the observer gains are disconnected, and
the observer is simply a copy of the plant with a different initial condition.
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Figure 1214
Simulation showing
respanse of observer:
a. closed-loop;

b. open-loop with
observer gains
discornected
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Students who are using MATLAB should now run ¢h12p4 in Appendix B. You will learn how
to use MATLAB to design an cbserver using pole placement. This exercise solves Fxample
12.5 using MATLAB.

Skiill-Assessment Exercise 12.4
o ::l-:::.l. Problem Design an observer for the plant

(s +6)

o= 5+7s+B}s+9)

whose estimated plant is represented in state space in observer canonical form

as
-24 1 O 0
AX+Bu=|—-191 0 IL|x+|1|u

X
-504 0 0O 6

$=Ck=[l 0 0]k
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The observer will respond 10 times faster than the controlled loop designed in
in Skill-Assessment Exercise 12,3,

Answer L =[216 9730 383,696]", where T signifies vector transpose.
The complete solution is on the accompanying CD-ROM.

In this section we designed an observer in observer canonical form that uses the
output of a systern o estimate the state variables. In the next section we examine
the conditions under which an observer cannot be designed.

12.6 Observability

Recall that the ability to control all of the state variables is a requirement for the
design of a controller. State-variable feedback gains cannot be designed if any state
variable is uncontrollable. Uncontrollability can be viewed best with diagonalized
systems. The signal-flow graph showed clearly that the uncontrollable state vari-
able was not connected to the control signal of the system.

A similar concept governs our ability to create a design for an observer. Specif-
ically, we are using the output of a system to deduce the state variables. If any state
variable has no effect upon the output, then we cannot evaluate this state variable
by observing the output.

The ability to cbserve a state variable from the output is best seen from the
diagenalized system. Figure 12.15(a) shows a systermn where each state variable can
be observed at the output since each is connected to the output. Figure 12.15(b) is an
example of a system where all state variables cannot be observed at the output. Here
x; 1s not connected to the cutput and could not be estimated from a measurement
of the output.

We now make the following defimtion based upon the previous discussion:

If the initial-state vector, X{fp}, can be found from u(r) and y(1) measured over
a finite interval of time from 1, the system is said to be observable; otherwise
the system is said to be unobservable.

Simply stated, observability is the ability to deduce the state variables from a
knowledge of the input, u(f), and the output, v(1). Pole placement for an observer is
a viable design technigue only for systems that are observable, This section shows
how to determine, a priori, whether or not pole placement is a viable design tech-
nique for an observer.

Observability by Inspection
We can also explore observability from the output equation of a diagonalized sys-
tem. The output equation for the diagonalized system of Figure 12.15(q) is

y=Cx=[1 1 I]x (12.76)

On the other hand, the ocutput equation for the unobservable system of Figure
12.15(b) is

y=Cx=[0 1 I]x (12.77)
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Figure 12.15
Comparison of

a. phservahle and
b. unobservable
systems

Notice that the first column of Eq. (12.77) is zero. For systems represented in par-
alle] form with distinct eigenvalues, if any column of the output coupling matrix is
Zero, the diagonal system is not observable.

The Observability Matrix

Again, as for controllability, systems represented in other than diageonalized form
cannot be reliably evaluated for observability by inspection. In order to determine
observability for systerns under any representation or choice of state variables, a
matrix can be derived that must have a particular property if all state variables
are to be observed at the output. We now state the requirements for observability,
including the form, property, and name of this mairix.
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Figure 12.16
System of
Example 12.6
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An rth-order plant whose state and output equations are, respectively,
X = AX + Bu (12.78a)
y — Cx {12.78b)

is completely observable® if the matrix

C
CA
Om = . (12.79)
CA"!
is of rank n, where Oy is called the observability matrix.’
The following two examples illustrate the use of the observability matrix.

Observability via the observability matrix

Problem Determing if the systern of Figure 12.16 is observable.

Solution The state and cutput equations for the system are

0 1 0 0

x=Ax+Bu-=| 0 0 1lx+ 0] (12.80a)
-4 -3 -2 1

y=Cx=J0 5 1x (12.80b)

SCompletely observable means that all state variables are observable. This textbook uses ebserv-
able to mean completely observable,

TSee Ogata (1990; 706-708) for a denvation.
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_MATLAB

Example 12.7

Figure 12.17
Systermn of
Example 12 7

Thus, the observability matrix, Opm, is

C 0 5 1
Oy =|CA|=]| 4 -3 3 (12.81)

CA* -12 -13 -9

Since the determinant of Oy equals —344, Oy is of full rank equal to 3. The system
is thus observable

You might have been misled and concluded by inspection that the system 1s un-
observable because the state variable x; is not fed directly to the cutput. Remernber
that conclusions about observability by inspection are valid only for diagonalized
systemns that have distinct eigenvalues.

Students who are using MATLAB should now rurn ch12p5 m Appendix B. You will learn how
to use MATLAB to test a system for observability, This exercise solves Example 12.6 using
MATLAB.

Unchservability via the observabillity matrix

Problem Determine whether the system of Figure 12.17 1s observable.

Solution The state and output equations for the system are

_ _|1 0 1 0
X = AX+ Bu = [_5 Y ..4]): + []]u (12.82a)

y=C=[5 4x (12.82b)

The observability matrix, O, for this system is

[c1 [ 5 a4
OM“lCA]‘l—zo —16] (12.83)
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The determinant for this observability matrix equals 0. Thus, the observability ma-
trix does not have full rank, and the system is not vbservable.

Again, you might conclude by inspection that the system is observable because
all states feed the output. Remember that observability by inspection is valid only
for a diagonalized representation of a system with distinct eigenvalues.

Skill-Assessment Exercise 12.5
Problem Determine whether the systemn

-2 -1 -3 2
x=Ax+Bu=| 0 -2 1|x+|1|u
-7 -8 -¢ 2

y=Cx=04 6 8x

is observable.
Answer Observable.

The complete solution is en the accompanymg CD-ROM.

Now that we have discussed observability and the observability matrix, we are
ready to talk about the design of an observer for a plant not represented in observer
canonical form.

12.7 Alternative Approaches to Observer Design

Earlier in the chapter we discussed how to design controllers for systems not
represented in phase-variable form. One method is to match the coefficients of
det{sI — (A — BK)] with the coefficients of the desired characteristic polynomial.
This method can yield difficult calculations for higher-order systems. Another
method is to transform the plant to phase-variable form, design the controller, and
transfer the design back to its original representation. The transformations were
derived from the controllability matrix.

In this section we use a similar idea for the design of observers not repre-
sented in observer canonical form. One method is to match the coefficients of
det [sI — (A — LC)] with the coefficients of the desired characteristic polynomial,
Again, this method can yield difficult calculations for higher-order systems. An-
other method is first to transform the plant to observer canonical form so that the
design equations are simple, then perform the design in observer canonical form,
and finally transform the design back to the original representation.

Let us pursue this second method. First we will derive the transformation be-
tween a system representation and its representation in observer canonical form.
Assume a plant not represented in observer canonical form,

Z= Az + Bu (12.84a)
y=0Cz (12.84b)
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whose observability matrix is

P
CA

CA?
Oz = (12.85)

C‘;ﬂ—z
CAH—IJ

Now assume that the systern can be transformed to the observer canonical form,
x, with the transformation

z =P (12.86)

Subsntuting Eq. (12.86) into Eq. (12.84) and premuluplying the state equation by
P!, we find that the state equations in observer canonical form are

% = P 'APx + P 1Bu (12.87a)
y = CPx (12.87b)

whose observability matrix, Opgx, 18

CP C
CP(P'AP) CA
Onix = CP(P~'AP)XP~'AP) =| CA’ [P (1288)

CP(P-'ARYP 'AP)---(P'AP)| €A™

d

Substituting Eq. (12.85) into (12.88) and solving for P, we obtain
P = Om: 'Owmx (12.89)

Thus, the transformation, P, can be found from the two observability matrices.

After transforming the plant to observer canonical form, we design the feed-
back gains, Ly, as in Section 12.5. Using the matrices from Eq. (12.87) and the
form suggested by Eq. (12.64), we have

e, = (P IAP - L,CPye, (12.90a)
y— 3 = CPe (12.90b)

Since X = P!z, and & = P'Z, then ¢, = x — & = P 'e,. Substituting €5 =
P-le, into Eqs. (12.90) transforms Egs. (12.90) back to the original representation.
The result is

éx = (A — PL,O)e, (12.91a)
y—3 = Ce, (12.91b)
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Comparing Eq. (12.91a) to (12.644), we see that the observer gain vector is
Ly = PL, (12.92)

We now demonstrate the design of an observer for a plant not represented in ob-
server canonical form. The first example uses transformations to and from chserver
canonical form. The second example matches coefficients without the transforma-
tion. This methed, however, can become difficult if the system order is high.

Observer design by transformation

Problem Design an observer for the plant

1
GO = G e 26+ (22

represented in cascade form. The clesed-loop performance of the observer is gov-
erned by the characteristic polynomial used in Example 12.5: 5° + 1205° +2500s +
50,000.

Solution First represent the plant in 1ts original cascade form.

-5 1 0 0
Z=Az+Bu=| 0 -2 1|z+|0|u (12.943)
0O o0 -1 1
y=Cz=[1 0 Oz (12.94b)
The cbservabihlity matrix. Opyg, is
C 1 0 0
Oy =|CA | =|-5 1 0 (12.95)
CA’ 25 -7 1

whose determinant equals 1. Hence, the plant is observable.
The characteristic equation for the plant is

det(s1-A) = s* +82+ 175+ 10 = 0 (12.96)

We can use the coefficients of this characteristic polynomial to form the observer
canonical form:

X — Aux + B (12.97a)
y=0Cx (12.97b)

where

-8 1L O
Ay =|-17 0 1I|; C=011 0 0] (12.98)
—-10 0 O
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The observability matrix for the observer canonical form is

melil-3

We now design the observer for the observer canonical form. First form (A, -

LXCK)!
-8 1 0] [4
AL, =|-17 0 1|-|Llll 0 0

-10 0 0] |b

U 0
0 (12.99)
4'? o 8 1

=|-(17+h) O 1 (12.100)

—(10+4&) 0 O

[ —(8+ ) | 0]

whose characteristic polynomial is
det[sT — (Ax — LGl = + B+ D2+ (1T + Bs+ (10 + 1) (12.101)

Equating this polynomial to the desired closed-loop observer characteristic equa-
tion, s* + 120s> + 2500s + 50,000, we find

112
L. =| 2483 (12.102)
49,990

Now rransform the design back to the original representation. Using Eq. (12.89),
the transformation matrix is

I ¢ 0
P=0Op 'Om=|-3 1 0 (12.103)
i -1 1
Transforming Ly to the original representation, we obtain
112
L.=PL, =| 2147 (12.104)
47.619

The final configuration is shown in Figure 12.18.

A simulation of the observer 15 shown in Figure 12.19(a). To demonstrate
the effect of the observer design, Figure 12.19(b} shows the reduced speed if
the observer is simply a copy of the plant and all observer feedback paths are
disconnected.

MATLAB  Students who are using MATLAB should now run chl2p6 in Appendix B. You will tearn how to
~ use MATLAB to design an observer for a plant not represented in observer canonical form.
You will see that MATLAB does net require transformation to observer canonical form. This

exercise solves Example 12.8 using MATLAB.
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Example 12.9

Figure 12.20

a. Plant,

b. designed observer
for Example 129

Observer design hy matching coefficients

Problem A time-scaled model for the body’s blood glucose level is shown in
Eg. (12.105). The output is the deviation in glucose concentraticn from its mean
value in mg/100 ml, and the input is the intravenous glucose injection rate in gfkg/hr
(Milhorn, 1966).

Gesy — 2076 + 0916)
VT GF12DG + 2.69)

Design an observer for the phase variables with a transient response described by
{ =07 and w, = 100.

(12.105}

Solution We can first model the plant in phase-variable form. The result is shown
in Figure 12.20(a).
For the plant,

_| 0 L. .
A_l_3_42 _3_%], C = [372.81 407] (12.106)

—3.42
(a)

407

35.506
b
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Calculation of the observability matrix, Oy = [C CA)’, shows that the plant is
observable and we can proceed with the design. Next find the characteristic equa-
tion of the observer. First we have

_ _ 0 1] [&
A-LC= l_g_ po —3-96I L,z [372.81 407
_[  -372814 (1 — 4071)
- l—(3-42 +372.818) —(3.96 + 407k) (12.107)

Now evaluate det [AI-(A —LC)] = Qinorder to obtain the characteristic equation:

(A + 372.811) —(1 — 4074)
(3.42 + 372.81L) (A +3.96 + 407L,)

= A + (3.96 + 372.811; + 407L)A
+(3.42 + 84.391, + 372.81L)
=0 (12.108)

det[AL — (A — LC)] = detl

From the problem statement, we want { = 0.7 and w, = 100. Thus,
A 4 1401 + 10,000 = 0 (12.109)

Comparing the coefficients of Egs. (12.108) and (12.109), we find the values
of I; and /; 1o be —38.397 und 35.506, respectively. Using Eq. (12.60), where

B 0 1] o], . ] _ [-38.397
il [—3.42 ~3.96]' il [l] C=Dp7z8l 407 L _[ 35.506]
(12.110)

the observer is implemented and shown in Figure 12.20(b).

Skill-Assessment Exercise 12.6
b Contrsl Problem Design an observer for the plant
S:I"Iu g p

1

6O = e oe+9

whose estimated plant is represented in state space in cascade form as

_ -7 1 0] [o
5=A2+Bu=| 0 -8 1|g+|0|u
o o -9 |1

y=Ck=N1 0 0]%
The closed-loop step response of the observer is to have 10% overshoot with a

0.1 second settling time.

Answer 456
L, =| 28640
1.54 x 105

The complete solution is on the accompanying CD-ROM.
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Figure 12.21
Integral control for
steady-state errot
design

Now that we have explored transient response design using state-space tech-
mques, let us turn to the design of steady-state error characteristics.

12.8 Steady-State Error Design via Integral Control

In Section 7.8 we discussed how to analyze systems represented in state space for
steady-state error. In this section we discuss how te design systems represented in
state space for steady-state error.

Consider Figure 12.21. The previously designed controller discussed in Sec-
tion 12.2 is shown inside the dashed box. A feedback path from the cutput has been
added to form the error, ¢, which is fed forward to the controlled plant via an in-
tegrator. The integrator increases the system type and reduces the previous finite
error to zero. We will now derive the form of the state equations for the system of
Figure 12.21 and then use that form to design a controller. Thus, we will be able
to design a system for zero steady-state error for a step input as well as design the
desired transient response.

An additional state variable, xp, has been added at the output of the leftmost
integrator. The error is the derivative of this variable. Now, from Figure 12.21,

xy =r—Cx (12.111)
Writing the state equations from Figure 12.21, we have
X = Ax + Bu (12.112a)
iy =-Cx+r (12.112b)
y=0Cx (12.112¢})

Egs. (12.112) can be written as augmented vectors and matrices. Hence,

bR R

y=I[C 0] [;] (12.113b)

+
4=
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But
u= Kx+ Ky = -|K K,,]Lzl (12.114)
Substituting Eq. (12.114) into (12.1134) and simplifying, we obtain
X A - BK) BK.][x 0]
[E]-[* g w&x) o, s
v = [C 0]["] (12.115b)
Xy

Thus, the system type has been increased, and we can use the characteristic equa-
tion associated with Eq. (12.115a) to design K and K, to yield the desired transient
response. Realize, we now have an additional pole to place. The effect on the tran-
sient response of any closed-loop zeros in the final design must also be taken into
consideration. One possible assumption is that the closed-loop zeros will be the
same as those of the open-loop plant. This assumption, which of course must be
checked, suggests placing higher-order poles at the closed-loop zero locations. Let
us demonstrate with an example.

Design of integral control
Problem Consider the plant of Egs. (12.116):

X = [_g _;]x h mu (12.116a)

y=11 0lx (12.116b)

a. Design a controller without integral control to yield a 10% overshoot and a set-
tling time of 0.5 second. Evaluate the steady-state error for a umit step input.

b. Repeat the design of (a) using integral control. Evaluate the steady-state error
for a unit step input.

Solutien

a. Using the requirements for settling time and percent overshoot, we find that the
desired characteristic polynomial is

5 + 165 + 183.1 (12.117)

Since the plant is represented in phase-variable form, the characteristic polyno-
mial for the controlled plant with state-variable feedback is

S+ (5 +k)s+ @ +ki) (12.118)
Equating the coefficiens of Eqs. (12.117) and (12.118), we have
K =[k k3] =[180.1 11] (12.119)
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From Eg. (12.3), the controlled plant with state-variable feedback represented
in phase-variable form is

P . 0 1 0
Xx=(A-BKx+Br= [L183.1 _16]1; + Il]r (12.120a)

y=Cx=[1 0 {12.120b)
Using Eq. (7.96), we find that the steady-state error for a step input 15

e(x) = 1+ C(A - BK)'B

=1+l D][—ISB.I —16] [l]

= (1L995 (12.121)

b. We now use Egs. (12.115) to represent the integral-controlled plant as follows:

al o 11 [0 ol [[=71 [o
[jc,,]= ([—3 —5] ll][k' "‘21) [1]"’* [xz]+Hr
wnl | —11 0 0 |lxv] [1
0 1 0 X FU‘
=|—(3+k) —(O+k) Kl|lxz|+]|0]|r (12.122a)
| -1 0 0 XN _1
X
y=01 0 0]|x (12.122b)
XN

Using Eq. (3.73) and the plant of Eqgs. (12.116), we find that the transfer
function of the plantis G{s) = 1. (s? + 55 + 3). The desired characteristic poly-
nomial for the closed-loop integral-controlled system is shown in Eq. (12.117).
Since the plant has no zeros, we assume no zeros for the closed-loop system and
augment Eq. (12.117) with a third pole, (s + 100), which has a real part greater
than five times that of the desired dominant second-order poles. The desired
third-order closed-loop system characteristic polynomial is

(s + 100)(s% + 165 + 183.1) = s + 11657 + 178315 + 18310 (12.123)
The characteristic polynomial for the system of Egs. (12.122) is

S+ +i)t (3 +k)s+K (12.124
Matching coefficients from Egs. (12.123) and (12.124), we obtain
ky = 1780.1 (12.125a)
ky = 111 (12.125b)
K. = 18310 (12.125¢c)
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Substituting these values into Eqs. (12.122) yields this closed-loop integral-
controlled system:

i‘] 0 1 0 X1
X | = |—1783.1 -116 18310||x;
j:N -1 0 0 AN

X1
y=1I0 0 0lfx (12.126b)
AN

1

0
+|0|r (12.126a)

In order to check our assumption for the zero, we now upply Eg- (3.73) 10
Eqgs. (12.126) and find the closed-loop transfer function te be

18,310
82 + 11652 + 1783.1s + 18,310

7(s) = (121271

Since the transfer function matches our design, we have the desired transient
response.

Now let us find the steady-state error for a unit step input. Applying Eq.
(7.96) 10 Egs. (12.126), we cbtain

0 1 o 1o
ey =1+[1 0 0]|-17831 -116 8310| |o|=0
—1 0 0 1

(12.128)
Thus. the system behaves like a Type 1 system.

Skall-Assessment Exercise 12.7
Problem Design an integral controller for the plant

=9 o+l
|7 -9 1)
y=14 1]x

to yield a step response with 10% overshoot, a peak time of 2 seconds, and zero
steady-state error.

Answer K =([221 -27], K.=379
The complete solution is on the accompanying CD-ROM.

Now that we have designed controllers and observers for transient response
and steady-state error, we summarize the chapter with a case study demonstrating
the design process.



768  Chapter 12 Design via State Space

Case Study

Basign

Figure 12.22
Simplified black
diagram of anterna
contral system
shown on the

front endpapers
{Configuration 1)
with K = 200

Antenna Control: Design of Controller and Observer

In this case study we use our ongoing antenna azimuth position control system
to demonstrate the combined design of a controller and an observer. We will
assume that the states are not available and must be estirated from the cutput.
The block diagram of the original system is shown on the front endpapers,
Configuration 1. Arbitrarily setting the preamplifier gain tc 200 and removing
the existing feedback, the forward transfer function is simplified to that shown in
Figure 12.22.

Usy=E(n 1325 Yis) =845}
| sG+ L7+ 100) "

The case study will specify a transient response for the system and a faster
transient response for the observer. The final design configuration will consist of
the plant, the observer, and the controller, as shown conceptually in Figure 12.23.
The design of the observer and the controller will be separate.

Problem Using the simplified block diagram of the plant for the antenna az-
imuth position control system shown in Figure 12.22, design a controller to yield
a 10% overshoot and a settling time of 1 second. Place the third pole 10 times as
far from the imaginary axis as the second-order dormnant pair.

Assume that the state variables of the plant are not accessible and design an
observer to estimate the states. The desired transient response for the observer is
a 10% overshoot and a natural frequency 10 times as great as the system
response above. As in the case of the controller, place the third pele 10 times
as far from the imaginary axis as the observer’s dominant second-order
pair.

Solution

Controlier design We first design the controller by finding the desired char-
acteristic equation. A 10% overshoot and a settling time of 1 second yield { =
0.591 and w, = 6.77. Thus, the characteristic equation for the dominant poles is
s? + Bs + 45.8 = 0, where the dominant poles are located at —4 + j5.46. The
third pole will be 10 times as far from the imaginary axis, or at —40. Hence, the
desired characteristic equation for the clesed-loop system is

(7 +8s+458)(s +40) = s* + 485 + 36585+ 1832 =0  (12.129)

Next we find the actual characteristic equation of the clesed-loop system.
The first step is to model the closed-loop system in state space and then
find its characteristic equation. From Figure 12.22, the transfer function of the
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Plam
=0 +
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Obscinver
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Ye
A
-
L >
Controller
K |
Figura 12.23 Y
Conceptual state- plant 15
Space design 1325 1325
configurabon, showing Gis) = (12.130)

plant, observer, and
controller

Figure 12.24
Signal-flow graph for
Gis}) = 1325

Ists? + 101.71s +
171

sts+ L7D(s + 100)  s(s2 + 101.71s + 171)

Using phase variables, this transfer function is converted to the signal-flow graph
shown in Figure 12.24, and the state equations are written as follows:

0 | 0 0
Xx=|0 0 I |x+]|0|u= Ax +Bu (12.131a)
0 —171 -101.71 1

y=[1325 0 Olx = Cx (12.131b)

-17
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Figure 12.25

Plant with state-
variable feedback for
controler design

—&

We now pause in our design to evaluate the controllability of the system. The
controllability matrix, Cpy. is

0 0 1
Cu=[B AB A’B] = |0 1 —101.71 (12.132)
1 101.71 10,173.92

The determinant of Cy is —1; thus, the system is controllable.

Continuing with the design of the controller, we show the controller's config-
uration with the feedback from all state variables in Figure 12.25. We now find
the characteristic equation of the system of Figure 12.25. From Eq. (12.7) and
Eq. (12.131a), the system matrix, A — BK, is

0 1 0
A-BK=| ¢ 0 1 (12.133)
b —(171+k) —(10L71 + k)

Thus, the closed-loop system’s characteristic equation is
det[sL — (A ~BK)] = 5° + (10171 + k3)s> + (171 + ka)s + ky = 0 (12.134)

Matching the coefficients of Eq. (12.129) with those of Eq. (12.134), we evaluate
the &,"s as follows:

ky = 1832 (12.135a)
k) = 194.8 (12.135b)
k3 = —53.71 (12.135c¢)

Observer design  Before designing the observer, we test the system for observ-
ability. Using the A and C matrices from Egs. (12.131), the observability matrix,

On, 15
1325 0 0
=1 0 1325 ¢ (12.136)
0 0

C
Op = [ CA
1325

CA?
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The determinant of Oy is 13253, Thus, O is of rank 3, and the system is ob-
servable.

We now proceed to design the observer. Since the order of the system is not
high, we will design the observer directly without first converting to observer
canonical form. Froin Eq. (12.64a) we need first to find A — LC. A and C from
Egs. (12.131) along with

)
L=|hL (12.137)
I3
are used to evaluate A — LC as follows:
—13251; | 0
A—LC = |—1325 0 i (12.138)
—13255 —171 —-101.71

The characteristic equation for the observer 1s now evaluated as

det[AI — (A — LC)] = A% + (1325]; + 101.71)A?
+ (134,800f; + 1325L + 171)A
+ (226,6001, + 134,8006 + 1325k)
= (12.139)

From the problem statement, the poles of the observer are to be placed to
yield a 10% overshoot and a natural frequency 10 times that of the system’s dom-
inant pair of poles. Thus, the observer’s dominant poles yield [s* + (2 % 0.591 x
67.7)s + 67.72] = (s* + 80s + 4583). The real part of the roots of this polynomizal
is —40. The third pole is then placed 10 times farther from the imaginary axis at
—400. The composite characteristic equation for the observer is

(5% + 80s + 4583)(s + 400) = 5° + 4805 + 36.580s
+ 1,833,000 = 0 (12.140)

Matching coefficients from Egs. (12.139) and (12.140), we solve for the observer
Eains:

I, = 0.286 (12.1412)
L = —1.57 (12.141b)
I; = 1494 (12.141c)

Figure 12.26, which follows the general configuration of Figure 12.23, shows the
completed design, including the controller and the observer.

The results of the design are shown in Figure 12.27. Figure 12.27(a) shows
the impulse response of the closed-loop system without any difference between
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Figure 12.26
Completed state-
space design for
the anterna azimuth
positicn control
system, showing
comtroller and
observer

¥

Plan )

& —&; =-1832 1
Cimtraller

Observer

i, =1494

the plant and 1ts modeling as an observer. The undershoot and setthing ime
approximately meet the requirements set forth in the problem statement of
10% and { second, respectively. In Figure 12.27(b), we see the response

designed into the observer. An initial condition of 0.006 was given to x, in the
plant to make the modeling of the plant and observer different. Notice that the
observer’s response follows the plant’s response by the time 0.06 second is
reached.

Challenge You are now given a case study to test your knowledge of this
chapter’s objectives: You are given the antenna azimuth position control system
shown on the front endpapers, Configuration 3. If the preamplifier gain K = 20,

do the following.

a. Design a controller to yield 15% overshoot und a settling time of 2 seconds.

Place the third pole 10 times as far from the imaginary axis as the second-
order dominant pole pair. Use physical variables as follows: power amplifier
output, motor angular velocity, and motor displacement.

b. Redraw the schematic shown on the front endpapers, showing a tachometer

that yiekds rate feedback along with any added gains or attenuators required to
implement the state-variable feedback gains.
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. Assume that the tachometer is not available to provide rate feedback. Design

an observer to estimate the physical variables’ states. The observer will
respond with 10% overshoot and a natural frequency 10 times as great as

the system respense. Flace the observer’s third pole 10 times as far from the
imaginary axis as the observer’s dominant second-order pole pair.

d. Redraw the schematic on the front endpapers, showing the implementation of
the controller and the observer.

e. Repeat (a) and (c) using MATLAB.

Summary

This chapter has followed the path established by Chapters 9 and 11—control

system design. Chapter 9 used root locus techniques to design a control system
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with a desired transient response. Sinusoidal frequency response techniques for
design were covered in Chapter t1, and in this chapter we used state-space
design techniques.

State-space design consists of specifying the system’s desired pole locations
and then designing a controller consisting of state-variable feedback gains to
meet these requirements. If the state variables are not available, an cbserver 1s
designed to emulate the plant and provide estimated state variables.

Controller design consists of feeding back the state variables to the input,

u, of the system through specified gains. The values of these gains are found by
matching the coefficients of the system’s charactertstic equation with the coeffi-
cients of the desired characteristic equation. In some cases the control signal,

u, cannot affect one or more state variables. We call such a system uncontrol-
lable. For this system a total design is not possible. Using the controllabaliry
matrix, a designer can tell whether or not a sysiem is controllable prior to the
design.

Observer design consists of feeding back the error between the actual out-
put and the estimated output. This error is fed back through specified gams to
the derivatives of the estimated state variables. The values of these gains are
also found by matching the coefficients of the observer’s characteristic equa-
tion with the coefficients of the desired characteristic equation. The response of
the observer is designed to be faster than that of the controller, so the estimated
state vanables effectively appear instantanecusly at the controller. For some sys-
tems the staie variables cannot be deduced from the output of the system, as 1s
required by the observer. We call such systems unobservable. Using the observ-
ability matrix, the designer can tell whether or not a system is observable. Ob-
servers can be designed only for observable systems.

Finally, we discussed ways of improving the steady-state error performance
of systems represented in state space. The additien of an integration before the
controlled plant yields improvement in the steady-state error. In this chapter this
additional integration was incorporated into the controller design.

Three advantages of state-space design are apparent. First, in contrast to
the root locus method, all pole locations can be specified to ensure a negligible
effect of the nendominant poles upon the transient response. With the root locus.
we were forced to justify an assumption that the nondominant peles did not ap-
preciably affect the transient response. We were not always able to do s0. Second,
with the use of an observer, we are no longer forced to acquire the actual system
variables for feedback. The advantage here is that sometimes the variables cannot
be physically accessed, or it may be too expensive to provide that access. Finally,
the methods shown lend themselves to design antomation using the digital
computer.

A disadvantage of the design methods covered in this chapter is the de-
signer’s inability to design the Jocation of open- or closed-loop zeros that may
affect the transient response. In root locus or frequency response design, the zeros
of the lag or lead compensator can be specified. Another disadvantage of stare-
space methods concerns the designer’s ability to relate all pole locations to the
desired response; this relationship is not always apparent. Also, once the design
is completed, we may not be satisfied with the sensitivity to parameter changes.
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Finally, as previously discussed, state-space techniques do not satisfy our intu-
1tion as much as root locus techniques, where the effect of parameter changes can
be immediately seen as changes in closed-loop pole locations.

In the next chapter we return to the frequency domain and design digital sys-

tems using gain adjustment and cascade compensation,

Review Questions

1.

5.

7.

9.
10.
11.

12.

13.

14.
15.

16.

17.

Briefiy describe an advantage that state-space technigues have over root
locus techniques in the placement of closed-loop poles for transient response
design.

Briefly describe the design procedure for a controller.

Different signal-fiow graphs can represent the same system. Which form
facilitates the calculation of the variable gains during controller design?

In order to effect a complete controller design, a system must be controllable.
Describe the physical meaning of controllability.

Under what conditions can inspection of the signal-fiow graph of a system
yield immediate determination of controllability?

In order to determine controllability mathematically, the controllability
matrix is formed, and its rank evaluated. What is the final siep in determin-
ing controllability if the controllability matrix is a square matrix?

What is an observer?

Under what conditions would you use an observer in your state-space design
of a contro] system?

Briefly describe the configuration of an observer.
What plant representation lends itself to easier design of an observer?

Briefly describe the design technique for an observer, given the configuration
you described in Question 9.

Compare the major difference in the transient response of an observer to that
of a controller. Why does this difference exist?

From what equation do we find the characteristic equation of the controller-
compensated system?

From what equation do we find the charactenstic equation of the ocbserver?

In order to effect a complete observer design, a system must be observable.
Describe the physical meaning of observability.

Under what conditions can inspection of the signal-flow graph of a system
yield immediate determination of observability?

In order to determine observability mathematically, the observability ma-
trix is formed and its rank evaluated. What is the final step in determining
observability if the observability matrix is a square matrix?
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Problems

1. Consider the following open-loop transfer functions, where G(s)} = ¥(s) U(5),
¥(s) is the Laplace transform of the output, and U/(s) is the Laplace transform
of the input control signal:

i G(s) = (%%

il Gils) = (s+5;s +7)
il Gs) = 32;2(1;)2 +9)
iv. G(s) = s 3;05;(: i)(ss)(: i)ﬁ)
v. G(s) = s

(2 + 45 + 1052 + 35 + 12)
For each of these transfer functions, do the following:
a. Draw the signal-flow graph in phase-variable form.
b. Add staie-variable feedback to the signal-flow graph.
c. For each closed-loop signal-fiow graph, write the state equations.

d. Write, by inspection, the closed-loop transfer funcuon, T(s), for your
closed-loop signal-flow graphs

e. Verify your answers for 7(s) by finding the closed-loop transfer functions
from the state equations and Eg. (3.73).

o ! 2. The following open-loop transfer functions can be represented by signal-ow
Selstlon graphs in cascade form.

i Gis) = 30(s + 2Hs + 7)

- 60 = e D69

- 5t 4354+

. G(s) = (s + 2)s? + 25 + 10)
For each, do the following:

a. Draw the signal-fiow graph and show the state-variable feedback.
b. Find the closed-loop transfer function with state-variable feedback
3. The following open-loop transfer functions can be represented by signal-flow
graphs in parallel form.

50(s2 + 75 + 25)
s(s + 10)s + 20)

S50(s + INs + 4)
E+NE+6)(s+7)

i. G(s) =

i G(s) =



3.

. Caniral 6.
Solutiow

7.

. Cowtrol 10.
Solutlam

Problems 777

For each. do the following:
a. Draw the signal-low graph and show the state-variable feedback.
b. Find the closed-loop transfer function with state-variable feedback.

. Given the following open-loop plant,

B 20
s+ DE+3NEET)

Gis)

design a conuroller to yield a 15% overshoot and a settiing time of 0.75
second. Place the third pole 10 times as Far from the imaginary axis

as the dominant pole pair. Use the phase variables for state-variable
feedback.

Section 12.2 showed that controller design is easier 10 implement if the un-
compensated system is represented in phase-variable form with its typical
lower companion matrix. We alluded to the fact that the design can just as
easily progress using the controller canonical form with its upper companion
matrix.

a. Redo the general controller design covered in Section 12.2, assuming
that the plant is represented in controller canonical form rather than
phase-variable form.

b. Apply your derivation to Example 12.1 if the uncompensated plant is
represented in controller canonjcal form.

Given the following open-loop plant:

100(s + 2)(s + 20)

G(s) = EF+Ds+3Ns+ 4

design a controller to yield 15% overshoot with a peak time of 0.5 second.
Use the controller canonical form for state-variable feedback.

Given the following open-loop plant:

Gis) = 20(s + 2)
©) = G e+ 6

design a controller to yield a 10% overshoot and a setiling time of 2 seconds.
Place the third pole 10 times as far from the imaginary axis as the dominant
pole pair. Use the phase variables for state-variable feedback.

Repeat Problem 4 assuming that the plant is represented in the cascade form.
Do not convert to phase-variable form.

Repeat Problem 7 assuming that the plant is represented in the parallel form.
Do not convert to phase-variable form.

Given the plant shown in Figure P12.1, what relationship exists between b,
and b; to make the system uncontrollable?
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Figure P12.1
—

11. For each of the plants represented by signal-flow graphs in Figure P12.2,
determine the controllability. If the controllability can be determined by in-
spection, state that it can and then verify your conclusions using the control-
lability matrix.

Figure P12.2 5
{figure continues)

(c)
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{e) f)

Use MATLAB to determine the controllability of the systems of Figure P12.2(d)
and (f).

In Section 12.4 we discussed how to design a controller for systems not rep-
resented in phase-variable form with its typical lower companion matrix. We
described how to convert the system to phase-variable form, design the con-
troller, and convert back to the criginal representation. This technigue can be
applied just as easily if the original representation is converted to controller
canonical form with s typical upper companion matrix. Redo Example 12.4
in the text by designing the controlier after converting the uncompensated
plant to controller canonical form,

Consider the following transfer function:

(s +6)

) 3)(s + 8)s + 10)

If the sysiem is represented in cascade form, as shown in Figure P12.3,
design a controller to yield a closed-loop response of 10% overshoot with a
settling time of 1 second. Design the controller by first transforming the plant
to phase vartables.

Lis) 1 Zaln | 22[-\ s+6 Yis)
—_—— - o -

s+ 10 s+8 5+73

Use MATLAB to design the controller gains for the system gwen in
Problem 14.

Repeat Problem 14 assuming that the plant is represented in parallel form.

The open-loop system of Problem 14 is represented as shown in Figure
P12.4. If the output of each block is assigned to be a state variable, design
the controller gains for feedback from these state variables.

Lits) 1 Zx(s)

o

s +6 Z(%) N i Fisi= Z|{S]_-

s+3 5+ 8 s+ 10
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o

MATLARB

18.

19.

20.

21.

22,

23.

24.
25,

26.

If an open-loop plant,

B 100
T oss+4)(s+ B)

G(x)

is represented in parallel form, design a controller to yield a closed-loop
response of 13% overshoot and a peak time of 0.2 second. Design the
controller by first transforming the plant io controller canonical form.

Consider the plant

1
sis+3Ns+7

G(s) =

whose state variables are not available. Design an observer for the observer
canonical variables 1o yield a transient response described by £ = 0.4 and
w, = T5. Place the third pole 10) times farther from the imaginary axis than
the dominant poles.

Design an observer for the plant

10
(s + 2)(s + 6)s + 12)

Gis)

operating with 10% overshoot and 2 seconds peak time. Design the observer
to respond 10 times as fast as the plant. Place the observer third pole 20
times as far from the imaginary axis as the observer dominant poles.
Assume the plant is represented in observer canomcal form.

Repeat Problem 19 assuming that the plant is represented in phase-variable
form. Do not convert to observer canonical form.

Consider the plant

(s+2)

6O = G356+ 9)

whose phase variables are not available. Design an observer for the phase
variables with a transient response described by £ = 0.6 and @, = 120. Do
not convert to observer canonical form.

Determine whether or not each of the systems shown in Figure P12.2 15
observable.

Use MATLAB to determine the observability of the systems of Figure P12.2(a) and (f).

Given the plant of Figure P12.5, what relationship must exist between ¢ and
c» in order for the system to be unobservable?

Design an observer for the plant

I
{s + 5)(s + 13)}(s + 20)

G(s) =
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represented in cascade form. Transform the plamt to observer canonical form
for the design. Then transform the design back to cascade form. The charac-
teristic polynomial for the observer is to he s* + 600s” + 40,0005 + 1,500,000,

27. Use MATLAB 1o design the observer gains for the system given in Problem 26.
28. Repeat Problem 26 assuming that the plant is represented in parallel form.
29. Design an observer for

50
(s + 3)(s + 6)(s + 9)

represented in phase-variable form with a desired performance of 10% over-
shoot and a settling time of 0.5 second. The observer will be 10 times as fast
as the plant, and the observer’s nondominant pole will be 10 times as far
from the imaginary axis as the observer’s dominant poles. Design the ob-
server by first converting to observer canonical form.

G(s) =

O Contrsl 30. Given the plant
falutian P

% = _('} é]x+|?]u: y=1 1

design an integral controller to yield a 10% overshoot, 0.5-second settling
time, and zero steady-state error for a step input.

31. Repeat Problem 30 for the following plant:

i=l_g _;]x+lﬂu; y—I1 1x

Design Problems

32. A magnetic levitation system is described mn Problem 42 in Chapter 9 (Cho,

1993). Remove the photocell in Figore P9.1H}) and design a controller for
phase vanables to yield a step response with 5% overshoot and a settling
time of (.5 second.
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Figura P12.6
Block diagram of a
gas-fired heater

. Contral .
Solution

MATLAB

33. The conceptual block diagram of a gas-fired heater is shown in Figure P12.6.

The commanded fuel pressure is proporticnal to the desired temperature. The
difference between the commanded fuel pressure and a measured pressure
related to the output temperature is used to actuate a valve and release fuel (o
the heater. The rate of fuel flow determines the temperature. When the output
temperature equals the equivalent commanded temperature as determined by
the commanded fuel pressure, the fuel flow is stopped and the heater shuts
off (Tyner, 1968).
If the transfer function of the heater, Gx(s), is

1 degrees F
(s + 0.4¥%s + 0.8} 2 min

GH(.S‘] =

and the transfer function of the fuel valve, G,(s), is

replace the temperature feedback path with a phase-variable controller that
yields a 5% overshoot and a settling time of 10 minutes. Also, design an ob-
server that will respond 10 times faster than the system but with the same
percent overshoot.

Fucl
Commanded Fuel vulume
fuel pressurs flow
pressure 4 EITH Fuel rute Temperaiure
- Heater -
valve
Temperature |

sensor and gain

34. The floppy disk drive of Problem 46 in Chapter § is to be redesigned using

state-variable feedback. The controller is replaced by a unity dc gain ampli-
fier, Go(s) = 800: (s + B00). The plant, Gy(s) = 20,000 [s{s + 100)], is in
cascade with the amplifier.

a. Design a controller to yield 109 overshoot and a settling time of 0.05
second. Assume that the state variables are the outpui position, output
velocity, and amplifier output.

b. Evaluate the steady-state error and redesign the system with an integral
controller to reduce the steady-state error to zero. (Use of a program with
symbolic capability is highly recommended.)

¢. Simulate the step response for both the controllercompensated and integral
controlier-compensated systems. Use MATLAB or any other computer program.
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MATLAB 35. Given the angle of attack control system for the AFTI/F-16 awrcraft shown in Figure
P9.12 {Monahemi, 1992}, use MATLAB to design a controller for the plant to yield
10% overshoot with a setthng time of 0.5 second. Assume that the phase variables
are accessible. Have the program display the step response of the compensated
system.

MATLAB 36. For the angle of attack control system of Problem 35, use MATLAB to design an ob-
server for the phase variables that 1s 15 tmes faster than the controller designed
system.

37. For the angle of attack control system of Problem 33, do the following:

a. Design an integral control using phase variables to reduce the steady-
state error to zero. {Use of a program with symbolic capability is highly
recommended.)

MATLAB b. Use MATLAB to obtain the step response.

Progressive Analysis and Design Problem

38. High-speed rail pantograpb. Problem 17 in Chapter 1 discusses active con-
trol of a pantograph mechanism for high-speed rail systems (O’ Connor, 1997).
In Problem 62(a), Chapter 5, you found the block diagram for the active pan-
tograph control system. For the open-loop portion of the pantegraph system
modeled in Chapter 5, do the following:

a. Design a controller 1o yield 20% overshoot and a 1-second settling time.

b. Repeat (a) with a zero steady-state error.

Cyber Exploration Laboratory

Experiment 12.1

Objective To simulate a system that has been designed for transient response via
a state-space controller and observer.

Minimum Required Software Packages MATILAB, Simulink, and the Control
System Toolbox

Prelab:

1. This experiment is based upon your design of a comtroller and observer as spec-
ified in the Case Study Challenge problem in Chapter 12. Once you have com-
pleted the controller and observer design in that problem, go on o Prelab 2.

2. What is the controller gain vectar for your design of the system specified in the
Case Study Challenge problem in Chapter 127

3. What is the observer gain vector for your design of the systemn specified in the
Case Study Challenge problem in Chapter 127

4. Draw a Simulink diagram to simulate the system. Show the system, the con-
troller, and the observer using the physical variables specified in the Case Study
Challenge problem in Chapter 12.
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Lah:

1. Using Simulink and your diagram from Prelab 4, produce the Simulink diagram
from which you can simulate the response.

2. Produce response plots of the system and the observer for a step mput.
3. Measure the percent overshoot and the settling time for both plots.

Postiab:

1. Make a table showing the design specifications and the simulation results tor
percent oversheot and settling time.

2. Compare the design specifications with the simulation results for both the sys-
tem response and the observer response. Explain any discrepancies

3. Describe any problems you had implementing your design.
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