## DARBHANGA COLLEGE OF ENGINEERING, DARBHANGA, BIHAR



**COURSE FILE** 

OF

## INTELLIGENT INSTRUMENT



## Course Code: 041706

**Faculty Name:** 

## MR. SHAKTI PRASAD SENAPATI

ASSISTANT PROFESSOR, DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING



विज्ञान एवं प्रावैधिकी विभाग Department of Science and Technology Government of Bihar

## **CONTENTS**

- 1. Cover Page & Content
- 2. Vision of the Department
- 3. Mission of the department
- 4. PEO's and PO's
- 5. Course objectives & course outcomes (CO's)
- 6. Mapping of CO's with PO's
- 7. Course Syllabus and GATE Syllabus
- 8. Time table
- 9. Student list
- 10. Course Handout
- 11.Lecture Plan
- 12. Assignment sheets
- **13. Tutorial Sheets**
- **14.Sessional Question Papers**
- 15.0ld End Semester Exam (Final Exam) Question Papers
- 16. Question Bank
- **17.** Power Point Presentations
- **18.Lecture Notes**
- **19.Reference Materials**
- 20.Results
- 21. Result Analysis
- 22. Quality Measurement Sheets
  - a. Course End Survey
  - b. Teaching Evaluation

#### **Department of Electrical and Electronics Engineering**

#### Vision of the Institute

To produce young, dynamic, motivated and globally competent Engineering graduates with an aptitude for leadership and research, to face the challenges of modernization and globalization, who will be instrumental in societal development.

#### **Mission of the Institute**

- 1. To impart quality technical education, according to the need of the society.
- 2. To help the graduates to implement their acquired Engineering knowledge for society & community development.
- 3. To strengthen nation building through producing dedicated, disciplined, intellectual & motivated engineering graduates.
- 4. To expose our graduates to industries, campus connect programs & research institutions to enhance their career opportunities.
- 5. To encourage critical thinking and creativity through various academic programs.

#### Vision of the Department

To bring forth engineers with an emphasis on higher studies and a fervour to serve national and multinational organisations and, the society.

#### **Mission of the Department**

M1: - To provide domain knowledge with advanced pedagogical tools and applications.

M2: - To acquaint graduates to the latest technology and research through collaboration with industry and research institutes.

M3: - To instil skills related to professional growth and development.

M4: - To inculcate ethical valued in graduates through various social-cultural activities.

### **PEO of EEE**

**PEO 01** – The graduate will be able to apply the Electrical and Electrical Engineering concepts to excel in higher education and research and development.

**PEO 02** – The graduate will be able to demonstrate the knowledge and skills to solve real life engineering problems and design electrical systems that are technically sound, economical and socially acceptable.

**PEO 03** – The graduates will be able to showcase professional skills encapsulating team spirit, societal and ethical values.

#### **PSO of EEE**

**PSO 01** Students will be able to identify, formulate and solve problems using various software and other tools in the areas of Automation, Control Systems, Power Engineering and PCB designing.

**PSO 02** Students will be able to provide sustainable solutions to growing energy demands.

#### **Course Descriptions**

This course is designed to review the fundamentals and practices of to acquire the basic knowledge of Intelligent Instruments, operational amplifier, linear, non-linear application of OP-AMP, basic concept of sensor & transducer and smart sensor. It covers design and analysis active filters, PLL, A/D & D/A convector and its use to prepare students to perform the analysis and design of various linear integrated circuits.

#### **Course Objectives:**

- 1. Understand the characteristics and features of intelligent instrumentation systems.
- 2. Understand the functioning of OP-AMP and design OP-AMP based circuits.
- 3. Design of smart sensors and understand concept of data compensation,
- 4. Understand the process of data transfer control and Design of data converters.

#### **Course Outcomes:**

CO1: Understand the fundamental concepts of intelligent instruments and its characteristics.

- CO2: Design the basic circuits using op-amp and perform operations and their troubleshooting.
- CO3: Understand different filters, their design and various applications in practical situations.
- CO4: Design the basic building blocks of smart sensors and interfacing devices.
- CO5: Analyse the basic building blocks of different types A/D and D/A converters.

| Sr. No. | Course Outcome                                                    | PO            |
|---------|-------------------------------------------------------------------|---------------|
| 1.      | CO.1 Have a thorough understanding of the fundamental concepts of | 1,2           |
|         | intelligent instruments and its characteristics.                  |               |
| 2.      | CO.2 To design the basic circuits using op-amp and perform        | 1,2,3,4,5,6,1 |
|         | operations and their troubleshooting.                             | 2             |
| 3.      | CO.3 To Understand the basic building blocks of smart sensor and  | 1,2,5,6,12    |
|         | interfacing devices.                                              |               |
| 4.      | CO.4 To understand, analyse and design basic building blocks of   | 1,2,3,5,6,12  |
|         | different types A/D and D/A converters.                           |               |
| 5.      | CO.5 To understand and the basics of memory and timer circuits.   | 1,2,5,12      |

| Course Outcomes                                                                                                          | <b>PO</b>    | PO           | <b>PO</b>    | PO           | PO           | PO           | PO | PO | PO | PO | PO | PO           |
|--------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|----|----|----|----|----|--------------|
|                                                                                                                          | 1            | 2            | 3            | 4            | 5            | 6            | 7  | 8  | 9  | 10 | 11 | 12           |
| CO.1 Have a thorough understanding of<br>the fundamental concepts of intelligent<br>instruments and its characteristics. | $\checkmark$ | $\checkmark$ |              |              |              |              |    |    |    |    |    |              |
| CO.2 To design the basic circuits using op-amp and perform operations and their troubleshooting.                         | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |    |    |    |    |    | $\checkmark$ |
| CO.3 To Understand the basic building blocks of smart sensor and interfacing devices.                                    | $\checkmark$ | $\checkmark$ |              |              | $\checkmark$ | $\checkmark$ |    |    |    |    |    | $\checkmark$ |
| CO.4 To understand and analyse basic                                                                                     |              |              |              |              |              |              |    |    |    |    |    |              |
| building blocks of different types A/D and D/A converters.                                                               | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ | $\checkmark$ |    |    |    |    |    | $\checkmark$ |
| CO.5 To understand and the basics of memory and timer circuits                                                           | $\checkmark$ |              |              |              | $\checkmark$ |              |    |    |    |    |    | $\checkmark$ |

#### **B. Tech. VII Semester (EEE) Intelligent Instruments** Max Marks: 100

Final Exam: 4-1-2 70 Marks Sessional: Internals:

20 Marks 10 Marks.

#### INTELLIGENT INSTRUMENTATION

Credit : 5

L-T-P: 3-0-3 Theory:

1. Intelligence, features characterizing intelligence, intelligent instrumentation system: features of intelligent instrumentation, components of intelligent instrumentation, block diagram of intelligent instrumentation. Lecture : 6

2. Signal amplification & attenuation (OP-AMP based), instrumentation amplifier (circuit diagram, high CMRR & other features), signal linearization(different types such as diode resistor combination, OP-AMP based etc.), bias removal signal filtering (output from ideal filters, output from constant – k filters, matching of filter sections, active analog filters).

Lecture: 10

3. OP-AMP based voltage to current converter, current to voltage conversion, signal integration, voltage follower (pre amplifier), voltage comparator, phase locked loop, signal addition, signal multiplication, signal transmission, description of spike filter. Lecture: 8

4. Smart sensors: Primary sensors, excitation, compensation, information coding/processing, data compensation, standard for smart sensor interface. Lecture 10

5. Interfacing instruments and computers: basic issues of interfacing address decoding; data transfer control, A/D convertor, D/A convertors, sample & hold circuit, other interface considerations. Lecture: 8

Text Books: 1. Principles of measurements and instrumentation by Alan S Morris, PHI 2. Intelligent instrumentation by Bamay, G.C.Prentice Hall

Reference Books: 1. Sensors and transducers by Parranabis, PHI 2. Introduction to digital signal processing: MGH

L T P/D Total L-T-P:

## GATE Syllabus of Intelligent Instrument

This subject is not in GATE syllabus.

Darbhanga College of Engineering, Darbhanga (Bihar)

Time table: Intelligent Instrument, 7<sup>th</sup> Sem. Room No.-

| Day/ | 10:00- | 10:50- | 11:40- | 12:30- | 1:20- | 2:00- | 2:50-  | 3:40- |
|------|--------|--------|--------|--------|-------|-------|--------|-------|
| time | 10:50  | 11:40  | 12:30  | 1:20   | 2:00  | 2:50  | 3:40   | 4:30  |
| MON  |        | II     |        |        | В     |       | II LAB |       |
| TUE  | Ι      | Ι      |        |        | R     |       |        |       |
| WED  |        |        |        |        |       |       |        |       |
| THU  |        |        |        |        | Ε     |       |        |       |
| FRI  |        | II     |        |        | Α     |       |        |       |
| SAT  |        |        |        |        | K     |       | II LAB |       |

# Darbhanga College of Engineering, Darbhanga(Bihar) 7th Semester, EEE Branch

| Branch | S.N. | <b>Registration No.</b> | Student Name        |
|--------|------|-------------------------|---------------------|
| EEE    | 1    | 17110111001             | RAUSHAN MISHRA      |
| EEE    | 2    | 17110111002             | GULSHAN KUMAR       |
| EEE    | 3    | 17110111003             | ROSHAN KUMAR        |
| EEE    | 4    | 17110111004             | ARUNODAY LAL        |
| EEE    | 5    | 17110111005             | PRANTIKA SUMAN      |
| EEE    | 6    | 17110111006             | HIMANI              |
| EEE    | 7    | 17110111007             | CHANDAN KUMAR       |
| EEE    | 8    | 17110111008             | SUBHKANT SAHU       |
| EEE    | 9    | 17110111009             | SHAMIM AKHATAR      |
| EEE    | 10   | 17110111010             | AKSHAY KUMAR        |
| EEE    | 11   | 17110111011             | SUBHAM KUMAR        |
| EEE    | 12   | 17110111012             | PRITY SINHA         |
| EEE    | 13   | 17110111013             | FUDAN KUMAR         |
| EEE    | 14   | 17110111014             | JYOTI KUMARI        |
| EEE    | 15   | 17110111015             | GAURAV KUMAR        |
| EEE    | 16   | 17110111016             | ARVIND KUMAR        |
| EEE    | 17   | 17110111017             | GOVIND KUMAR        |
| EEE    | 18   | 17110111018             | KESHAV KUMAR        |
| EEE    | 19   | 17110111019             | MUNNA KUMAR         |
| EEE    | 20   | 17110111020             | ABHIJEET KUMAR      |
| EEE    | 21   | 17110111021             | AJAY RAJ            |
| EEE    | 22   | 17110111022             | DEEPIKA KUMARI      |
| EEE    | 23   | 17110111023             | LEEPI DAS           |
| EEE    | 24   | 17110111024             | VIKASH KUMAR        |
| EEE    | 25   | 17110111025             | UDAY KUMAR YADAV    |
| EEE    | 26   | 17110111026             | HEMANT KUMAR        |
| EEE    | 27   | 17110111027             | SHUBHAM KUMAR ANAND |
| EEE    | 28   | 17110111028             | MD TAUHID           |
| EEE    | 29   | 17110111029             | MD ASIF             |
| EEE    | 30   | 17110111031             | AMAN KUMAR          |
| EEE    | 31   | 17110111032             | AMAN JAISWAL        |
| EEE    | 32   | 17110111033             | RAVI NAYAN KISHOR   |
| EEE    | 33   | 17110111034             | DILIP KUMAR         |
| EEE    | 34   | 17110111035             | ANIL KUMAR          |
| EEE    | 35   | 17110111036             | MD RAFIULLAH        |
| EEE    | 36   | 17110111037             | SHASHANK KUMAR      |
| EEE    | 37   | 17110111038             | SAKSHI SUMAN        |
| EEE    | 38   | 17110111039             | SUNIL KUMAR RAM     |
| EEE    | 39   | 17110111041             | RAHUL KUMAR         |
| EEE    | 40   | 17110111042             | SATYAM KUMAR        |
| EEE    | 41   | 17110111043             | DIPU KUMAR MISHRA   |
| EEE    | 42   | 17110111044             | VIKASH KUMAR        |

| EEE | 43 | 17110111045 | SAROJ KUMAR           |
|-----|----|-------------|-----------------------|
| EEE | 44 | 17110111045 | AJAY KUMAR SINGH      |
| EEE | 44 | 17110111040 | MD NAYEEM             |
|     | -  |             |                       |
| EEE | 46 | 17110111048 | MD SHAMIM AKHATAR     |
| EEE | 47 | 17110111049 | DEEPA KUMARI          |
| EEE | 48 | 17110111050 | SUBHASH KUMAR         |
| EEE | 49 | 17110111051 | PRIYA KUMARI          |
| EEE | 50 | 17110111052 | AMRENDRA KUMAR        |
| EEE | 51 | 17110111053 | RANI RUPA             |
| EEE | 52 | 17110111054 | AMAN KUMAR SRIVASTVA  |
| EEE | 53 | 17110111055 | ADITYA KUMAR          |
| EEE | 54 | 17110111056 | RAUSHAN KUMAR RAM     |
| EEE | 55 | 17110111057 | POOJA KUMARI          |
| EEE | 56 | 17110111058 | AVINASH KUMAR MISHRA  |
| EEE | 57 | 17110111059 | RAHUL KUMAR           |
| EEE | 58 | 17110111060 | VARUN KUMAR           |
| EEE | 59 | 17110111061 | BRAJESH KUMAR         |
| EEE | 60 | 17110111063 | ALOK KUMAR            |
| EEE | 61 | 17110111064 | ROHIT KUMAR SAH       |
| EEE | 62 | 17110111065 | MAYANK RAJ            |
| EEE | 63 | 18110111901 | RAJESH KUMAR          |
| EEE | 64 | 18110111902 | NAVEEN KUMAR          |
| EEE | 65 | 18110111903 | NIKITA RAJ            |
| EEE | 66 | 18110111904 | RITU RAJ              |
| EEE | 67 | 18110111905 | SONAKSHI KUMARI       |
| EEE | 68 | 18110111906 | PAWAN KUMAR           |
| EEE | 69 | 18110111907 | NITISH KUMAR BANTY    |
| EEE | 70 | 18110111908 | ADITYA CHANDRA RANJAN |
| EEE | 71 | 18110111909 | KUMARI SUPRABHA       |
| EEE | 72 | 18110111910 | BRAJ KISHORE          |
| EEE | 73 | 18110111911 | SAKSHI KUMARI         |
| EEE | 74 | 18110111912 | VIDYAPATI CHAURASIYA  |
| EEE | 75 | 17110111904 | LALIT KUMAR RAM       |
| EEE | 76 | 17110111907 | DEEPAK KUMAR PRABHAT  |
|     | ,0 | 1,110111707 |                       |

## **Course Hangout**

| Institute / College Name :     | DCE, Darbhanga, Bihar  |                |   |
|--------------------------------|------------------------|----------------|---|
| Program Name                   | INTELLIGENT INSTRUMENT |                |   |
| Course Code                    | 041706                 |                |   |
| Course Name                    | INTELLIGENT INSTRUMENT |                |   |
| Lecture / Tutorial (per week): | 4/1                    | Course Credits | 5 |
| Course Coordinator Name        | SHAKTI PRASAD SENAPATI |                |   |

#### 1. <u>Scope and Objectives of the Course</u>

This course is designed to review the fundamentals and practices of to acquire the basic knowledge of operational amplifier, linear, non-linear application of OP-AMP, basic concept of sensor & transducer and smart sensor. It covers design and analysis active filters, PLL, A/D & D/A convertor and its use to prepare students to perform the analysis and design of various linear integrated circuits.

#### 2. <u>Textbooks</u>

TB1: 'Linear Integrated Circuit, third edition, D.Roy Choudhary, shail B. Jain, New age international publication

TB2: Sensors and transducers by Parranabis, PHI

#### 3. <u>Reference Books</u>

- 1. Ramakant A.Gayakwad, "Op-Amps and Linear Integrated Circuits", 4th edition, Pearson education
- 2. Coughlin & Driscoll, "Operational-Amplifiers and Linear Integrated Circuits", 6th edition, Pearson educatio

#### Other readings and relevant websites

| S.No. | Link of Journals, Magazines, websites and Research Papers                                                                                                  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | http://www.srmuniv.ac.in/sites/default/files/downloads/ec0206_linear_integrated_circuits_2013_14.pdf                                                       |
| 2.    | https://www.accessengineeringlibrary.com/browse/troubleshooting-electronic-equipment-includes-<br>repair-and-maintenance-second-edition/c9780070483576ch09 |
| 3.    | https://en.wikipedia.org/wiki/Linear_integrated_circuit                                                                                                    |
| 4.    | http://www.sincomindia.com/linear-integrated-circuits-section-e-op-amp-applications-circuit.html                                                           |

#### 5. <u>Course Plan</u>

| SI. No.            | Topic Name                                                                                           | Periods |
|--------------------|------------------------------------------------------------------------------------------------------|---------|
|                    | 1.INTRODUCTION                                                                                       |         |
| 1.1                | Introduction and features characterizing intelligence                                                | 1       |
| 1.2                | Intelligent instrumentation system: static and dynamic system                                        | 2       |
| 1.3                | Components and block diagram                                                                         | 1       |
|                    | 2. OP-AMP BASED CIRCUITS                                                                             |         |
| 2.1                | Signal amplification: Basic of opamp, Inverting and Non-<br>inverting, adder, subtractor circuit etc | 3       |
| 2.2                | V-I,I-V convertor, integration, Differentiator etc                                                   | 2       |
| 2.3                | Log and antilog amplifier, multiplier, Divider Circuit                                               | 1       |
| 2.3                | Instrumentation amplifier                                                                            | 1       |
| 2.4                | voltage comparator                                                                                   | 2       |
| 2.5                | Signal linearization(+ and *)                                                                        | 1       |
| 2.6                | Filters: basics of pasive and active analog filter                                                   | 1       |
| 2.7                | Active LPF and HPF                                                                                   | 2       |
| 2.8                | Active BPF, BRF and all pass filter                                                                  | 2       |
| 2.9                | Description of spike filter and K-filter                                                             | 1       |
| 2.1                | PLL: Introduction, types of pll,block diagram of pll                                                 | 3       |
|                    | 3. SMART SENSOR                                                                                      |         |
| 3.1                | Introduction and Primary sensors, excitation                                                         | 2       |
| 3.2                | Compensation:                                                                                        | 2       |
| 3.3                | Data compensation                                                                                    | 2       |
| 3.4                | Information coding/processing,                                                                       | 1       |
| 3.5                | Standard for smart sensor interface                                                                  | 1       |
|                    | 4. INTERFACING INSTRUMENTS                                                                           |         |
| 4.1                | Introduction and : basic issues of interfacing                                                       | 1       |
| 4.2                | Address decoding                                                                                     | 2       |
| 4.3                | Data transfer control                                                                                | 1       |
| 4.4                | Other interface considerations                                                                       | 1       |
| 4.5                | Sample & hold circuit                                                                                | 2       |
| 4.6                | A/D convertor:                                                                                       | 2       |
| 4.7                | D/A convertor:                                                                                       | 2       |
|                    | TOTAL                                                                                                | 42      |
| . Evaluation Schem | <u>e:</u>                                                                                            |         |

| Component 1 | Mid Semester Exam     | 20 |
|-------------|-----------------------|----|
| Component 2 | Assignment Evaluation | 10 |

| Component 3** | End Term Examination** | 70  |
|---------------|------------------------|-----|
|               | Total                  | 100 |

\*\* The End Term Comprehensive examination will be held at the end of semester. The mandatory requirement of 75% attendance in all theory classes is to be met for being eligible to appear in this component.

#### **SYLLABUS**

| Topics                                                                                                                                                                                                                                                                                                                                                                              | No of lectures | Weightage |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| Intelligence, features characterizing intelligence, intelligent                                                                                                                                                                                                                                                                                                                     | 6              | 14%       |
| instrumentation system: features of intelligent instrumentation, components                                                                                                                                                                                                                                                                                                         |                |           |
| of intelligent instrumentation, block diagram of intelligent instrumentation.                                                                                                                                                                                                                                                                                                       |                |           |
| <b>Signal amplification &amp; attenuation</b> (OP-AMP based), instrumentation amplifier (circuit diagram, high CMRR & other features), signal linearization(different types such as diode resistor combination, OP-AMP based etc.), bias removal signal filtering (output from ideal filters, output from constant –k filters, matching of filter sections, active analog filters). | 10             | 24%       |
| <b>OP-AMP based voltage to current converter</b> , current to voltage conversion, signal integration, voltage follower (pre amplifier), voltage comparator, phase locked loop, signal addition, signal multiplication, signal transmission, description of spike filter.                                                                                                            | 8              | 19%       |
| <b>Smart sensors :</b> Primary sensors, excitation, compensation, information coding/processing, data compensation, standard for smart sensor interface.                                                                                                                                                                                                                            | 10             | 24%       |
| <b>Interfacing instruments and computers :</b> basic issues of interfacing, address decoding, data transfer control, A/D convertor, D/A convertors, sample & hold circuit, other interface considerations.                                                                                                                                                                          | 8              | 19%       |

#### This Document is approved by:

| Designation        | Name                       | Signature |
|--------------------|----------------------------|-----------|
| Course Coordinator | Mr. SHAKTI PRASAD SENAPATI |           |
| H.O.D              | Mr. Prabhat Kumar          |           |
| Principal          | Dr. Achintya               |           |
| Date               | 20.02.2021                 |           |



(Established under AICET Act, \_\_\_\_)

#### Department of Electrical and Electronics Engineering Intelligent instruments

- 1. Answer the following:-
  - (i) Define quality factor. What is quality factor for band pass active filter..
  - (ii) What are the properties of instrumentation amplifier?
  - (iii) Draw the circuit diagram of an ideal and practical integrator.
  - (iv) Define active filter .What are the advantages of active filter
  - (v) What do you mean by signal linearization?
  - (vi) Define and draw the circuit diagram of wide band reject filter.
- 2. Draw the circuit diagram of Schmitt trigger and explain its working. .
- 3. Design a second order low pass active filter with cutoff frequency 1 kHz. Given  $c_1{=}c_2{=}0.0047 \mu F$
- 4. Derive the gain expression for second order Butterworth high pass filter.
- 5. Draw the circuit diagram of instrumentation amplifier and derive the expression for gain.
- 6. Write short notes: (a) Signal multiplier (b) V to I and I to V converter.

#### Assignment 2

- 1. What do you mean by sample and hold circuit. Explain its circuit operation.
- 2. State and explain different components of intelligent instrumentation system.

3. What is basically the concept of smart sensors? What are the essential elements in such an unit? Show with the help of a diagram, the arrangement of these element

4. What are basic issues of interfacing instruments with computers? Write about data transfer control in detail.

5. Explain the various methods used for ADC. Explain anyone of them in detail. Also describe resolution, quantization error in ADC.

| Institute / School Name | Darbhanga College of Engineering, Darbhanga(Bihar) |                |  |
|-------------------------|----------------------------------------------------|----------------|--|
| Program Name            | B.Tech                                             |                |  |
| Course Code             | 041706P                                            |                |  |
| Course Name             | Intelligent Instruments Lab                        |                |  |
| Labs (per week)         | 2                                                  | Course Credits |  |
| Course Coordinator Name | Mr. SHAKTI PRASAD SENAPATI                         |                |  |

#### 1. <u>Scope and Objectives of the Course</u>

This is a course on the design and applications of operational amplifiers and sensors. This course introduces basic op-amp principles and show how the op-amp can be used to solve a variety of application problems. Much attention is given to basic op-amp configurations, linear and non-linear applications of op-amp and active filter synthesis, the course is designed as per the Bureau of Indian Standard guidelines which prepares the students for the future.

#### 2. <u>Reference Books</u>

#### **RB1: Concrete Lab Manual**

#### 3. Other readings and relevant websites

| S.No | Link of Journals, Magazines, websites and Research Papers                                                |
|------|----------------------------------------------------------------------------------------------------------|
|      |                                                                                                          |
| 1.   | http://www.srmuniv.ac.in/sites/default/files/downloads/ec0206_linear_integrated_circuits_2013_1<br>4.pdf |
| 2.   | http://www.eee.griet.ac.in/wp-content/uploads/2014/12/OPAM-Course-File.pdf                               |

#### 4. Lab Plan

| S.No. | Title of Experiment                                               |
|-------|-------------------------------------------------------------------|
| 1     | To design and verify inverting amplifier using multisim           |
| 2     | To design and verify non- inverting amplifier using multisim      |
| 3     | To design and verify summing amplifier using multisim.            |
| 4     | To design and verify an instrumentation amplifier using multisim. |
| 5     | To design and verify integrator using multisim.                   |
| 6     | To design and verify differentiator using multisim                |
| 7     | To design and verify low pass filter using multisim.              |
| 8     | To design and verify High Pass Filter using multisim              |

#### 3. Evaluation Scheme:

| Component 1*  | Lab Performance / File work |    |
|---------------|-----------------------------|----|
| Component 2   | Internal Viva – Voce        |    |
| Component 3** | End Term                    | 30 |
|               | total                       | 50 |

\*Lab Performance will be evaluated weekly

\*\*The End Term examination for practical courses is held at the end of semester and includes conduct of experiment and an oral examination (viva voce). The mandatory requirement of 75% attendance in all lab classes is to be met for being eligible to appear in this component

#### This document is approved by

| Designation        | Name                       | Signature |
|--------------------|----------------------------|-----------|
| Course Coordinator | Mr. SHAKTI PRASAD SENAPATI |           |
| HoD                | Mr. Prabhat Kumar          |           |
| Principal          | Dr. Achintya               |           |
| Date               | 20.02.2021                 |           |

#### Lecture Plan

| SI. No.         | Topic Name                                                                                       | Periods |  |
|-----------------|--------------------------------------------------------------------------------------------------|---------|--|
| 1.INTRODUCTION  |                                                                                                  |         |  |
| 1.1             | Introduction and features characterizing intelligence                                            | 1       |  |
| 1.2             | Intelligent instrumentation system: static and dynamic system                                    | 2       |  |
| 1.3             | Components and block diagram                                                                     | 1       |  |
|                 | 2. OP-AMP BASED CIRCUITS                                                                         |         |  |
| 2.1             | Signal amplification: Basic of opamp, Inverting and Non-inverting, adder, subtractor circuit etc | 3       |  |
| 2.2             | V-I,I-V convertor, integration, Differentiator etc                                               | 2       |  |
| 2.3             | Log and antilog amplifier, multiplier, Divider Circuit                                           | 1       |  |
| 2.3             | Instrumentation amplifier                                                                        | 1       |  |
| 2.4             | voltage comparator                                                                               | 2       |  |
| 2.5             | Signal linearization(+ and *)                                                                    | 1       |  |
| 2.6             | Filters: basics of pasive and active analog filter                                               | 1       |  |
| 2.7             | Active LPF and HPF                                                                               | 2       |  |
| 2.8             | Active BPF, BRF and all pass filter                                                              | 2       |  |
| 2.9             | Description of spike filter and K-filter                                                         | 1       |  |
| 2.1             | PLL: Introduction, types of pll,block diagram of pll                                             | 3       |  |
| 3. SMART SENSOR |                                                                                                  |         |  |
| 3.1             | Introduction and Primary sensors, excitation                                                     | 2       |  |
| 3.2             | Compensation:                                                                                    | 2       |  |
| 3.3             | Data compensation                                                                                | 2       |  |
| 3.4             | Information coding/processing,                                                                   | 1       |  |
| 3.5             | Standard for smart sensor interface                                                              | 1       |  |
|                 | 4. INTERFACING INSTRUMENTS                                                                       |         |  |
| 4.1             | Introduction and : basic issues of interfacing                                                   | 1       |  |
| 4.2             | Address decoding                                                                                 | 2       |  |
| 4.3             | Data transfer control                                                                            | 1       |  |
| 4.4             | Other interface considerations                                                                   | 1       |  |
| 4.5             | Sample & hold circuit                                                                            | 2       |  |
| 4.6             | A/D convertor:                                                                                   | 2       |  |
| 4.7             | D/A convertor:                                                                                   | 2       |  |
|                 | TOTAL                                                                                            | 42      |  |



(Established under AICET Act, \_\_\_\_)

#### Department of Electrical and Electronics Engineering Intelligent Instruments

#### <u>Assignment I</u>

- 1. Answer the following:-
  - (i) Define quality factor. What is quality factor for band pass active filter..
  - (ii) What are the properties of instrumentation amplifier?
  - (iii) Draw the circuit diagram of an ideal and practical integrator.
  - (iv) Define active filter .What are the advantages of active filter
  - (v) What do you mean by signal linearization?
  - (vi) Define and draw the circuit diagram of wide band reject filter.
- 2. Draw the circuit diagram of Schmitt trigger and explain its working. .
- 3. Design a second order low pass active filter with cutoff frequency 1 kHz. Given  $c_1{=}c_2{=}0.0047 \mu F$
- 4. Derive the gain expression for second order Butterworth high pass filter.
- 5. Draw the circuit diagram of instrumentation amplifier and derive the expression for gain.
- 6. Write short notes: (a) Signal multiplier (b) V to I and I to V converter.

#### Assignment 2

- 1. What do you mean by sample and hold circuit. Explain its circuit operation.
- 2. State and explain different components of intelligent instrumentation system.
- 3. What is basically the concept of smart sensors? What are the essential elements in such an unit? Show with the help of a diagram, the arrangement of these element
- 4. What are basic issues of interfacing instruments with computers? Write about data transfer control in detail.

5. Explain the various methods used for ADC. Explain anyone of them in detail. Also describe resolution, quantization error in ADC.

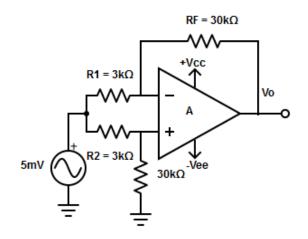
## Mid-Term Papers

#### Darbhanga College of Engineering, Darbhanga

#### **EEE Department**

B.Tech [7<sup>th</sup> Sem (EEE)] <u>Mid. Sem Exam</u> (Session: 2018-19)

#### Subject Code-041706


**Intelligent Instrumentation** 

Time: 2 Hours

Max. Marks: 20

#### Note: Attempt any 4 questions out of 5 given questions. Each question carries 5 marks.

- Draw the circuit diagram of an instrumentation amplifier and derive the expression for its gain. [5]
   Discuss the components of an intelligent instrumentation system with help of suitable block diagram. [5]
   Write the short note of the following. [5]
   A. Sensor
  - B. Transducer
  - C. Accuracy
  - D. Precision
- Define the Common-Mode Rejection Ratio (CMRR) of OP-AMP? Find out the CMRR of the following Circuit given below. [5]



Draw the block diagram of intelligent instrumentation. Mention the features characterizing intelligence. [5]

## Darbhanga College of Engineering, Darbhanga <u>EEE Department</u>

th

B.Tech [7<sup>th</sup> Sem (EEE)]

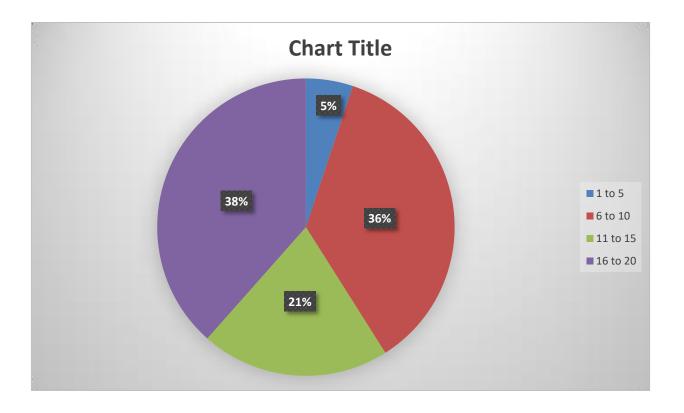
Mid. Sem Exam

(Session: 2019-20)

#### Subject Code-041706

Time: 2 Hours

**Intelligent Instrumentation** 


Max. Marks: 20

#### Note: Attempt all questions. CO-Course Outcomes, BL-Bloom Level

| S.<br>No. | Questions                                                                                                                 | Marks | CO  | BL |
|-----------|---------------------------------------------------------------------------------------------------------------------------|-------|-----|----|
| 1.        | Discuss the components of an intelligent instrumentation system with help of suitable block diagram.                      |       | CO1 | L1 |
|           | Or                                                                                                                        |       |     |    |
|           | What is an intelligent instrumentation system? Write down the features characterizing intelligent instrumentation system. |       |     |    |
| 2.        | Define the Common-Mode Rejection Ratio (CMRR) of an OP-AMP? Find<br>out the CMRR of the following Circuit given below.    | 5     | CO2 | L5 |

|    | $RF = 30k\Omega$ $R1 = 3k\Omega$ $V_{CC}$ $V_{O}$ $F1 = 3k\Omega$ $F$ $F2 = 3k\Omega$ $Gr$ $Or$ $Draw the circuit diagram of differential amplifier and derive the expression of its gain. Explain how its CMRR can be removed.$ |   |     |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|----|
| 3. | Draw the circuit diagram of an instrumentation amplifier and derive the expression for its gain. Also write the difference between Op-Amp and                                                                                                                                                    | 5 | CO3 | L4 |
|    | instrumentation Amplifier.                                                                                                                                                                                                                                                                       |   |     |    |
|    | Or                                                                                                                                                                                                                                                                                               |   |     |    |
|    | Draw the block diagram of intelligent instrumentation and discuss its different                                                                                                                                                                                                                  |   |     |    |
| 4  | blocks.                                                                                                                                                                                                                                                                                          | 5 | CO1 | L2 |
| 4. | Write the short notes of the following.                                                                                                                                                                                                                                                          | 5 | CO1 | LZ |
|    | A. Accuracy                                                                                                                                                                                                                                                                                      |   |     |    |
|    | B. Precision                                                                                                                                                                                                                                                                                     |   |     |    |
|    | Or                                                                                                                                                                                                                                                                                               |   |     |    |
|    | A. Sensor                                                                                                                                                                                                                                                                                        |   |     |    |
|    | B. Transducer                                                                                                                                                                                                                                                                                    |   |     |    |
|    |                                                                                                                                                                                                                                                                                                  |   |     |    |

- 1. Answer the the following:-
  - (i) Define quality factor. What is quality factor for band pass active filter.
  - (ii) What are the properties of instrumentation amplifier?
  - (iii) Draw the circuit diagram of an ideal and practical integrator.
  - (iv) Define active filter .What are the advantages of active filter.
  - (v) What do you mean by signal linearization?
  - (vi) Define and draw the circuit diagram of wide band reject filter.
  - (vii) What is basic difference between intelligent instrumentation system and instrumentation system?
  - (viii) Why we need compensation?
- 2. (a) Draw the circuit diagram of Schmitt trigger and explain its working.
  - (b) Describe the features of intelligent instrumentation. Give the block diagram of intelligent instrumentation system.
- 3. State and explain different components of intelligent instrumentation system.
- 4. (a) Derive the gain expression for first order butter-worth high pass filter. Draw its frequency response curve.
- 5. (a) Draw the circuit diagram of instrumentation amplifier and derive the expression for gain.
  - (b) What do you mean by sample and hold circuit. Explain its circuit operation.
- 6. (a) What is basically the concept of smart sensors? What are the essential elements in such an unit? Show with the help of a diagram, the arrangement of these elements.
  - (b) What is signal linearization? How you can achieve linear response by using op-amp.
- 7. (a) What are basic issues of interfacing instruments with computers? Write about data transfer control in detail.
  - (b) Explain the various methods used for ADC. Explain anyone of them in detail. Also describe resolution, quantization error in ADC.
- 8. (a) What is thermistor? Describe its working and its important characteristics.(b) Explain the different principles of working of capacitive transducers.
- 9. Write short notes:
  - (a) Signal multiplier (b) Piezo-electric effect.
  - (c) Cubic spline interpolation method (d) Information coding/processing

