DARBHANGA COLLEGE OF ENGINEERING

Darbhanga

COURSE FILE OF

LINEAR CONTROL THEORY

(EE 031712)

Faculty Name:

Akhil Mohammed K K

Asst. Prof. EEE Dept., DCE Darbhanga

विज्ञान एवं प्रावैधिकी विभाग Department of Science and Technology Government of Bihar

CONTENTS

- 1. Cover Page & Content
- 2. Vision of the Department
- 3. Mission of the department
- 4. PEO's and PO's
- 5. Course objectives & course outcomes (CO's)
- 6. Mapping of CO's with PO's
- 7. Course Syllabus and GATE Syllabus
- 8. Time table
- 9. Student list
- **10.Course Handout**
- 11.Lecture Plan
- 12.Assignment sheets
- **13. Tutorial Sheets**
- 14. Sessional Question Papers
- 15.0ld End Semester Exam (Final Exam) Question Papers
- 16. Question Bank
- **17.** Power Point Presentations
- **18.Lecture Notes**
- **19.Reference Materials**
- 20.Results
- 21. Result Analysis
- 22. Quality Measurement Sheets
 - a. Course End Survey
 - b. Teaching Evaluation

Vision of EEE: - To bring forth engineers with an emphasis on higher studies and a fervour to serve national and multinational organisations and, the society.

Mission of EEE: -

M1: - To provide domain knowledge with advanced pedagogical tools and applications.

M2: - To acquaint graduates to the latest technology and research through collaboration with industry and research institutes.

M3: - To instil skills related to professional growth and development.

M4: - To inculcate ethical valued in graduates through various social-cultural activities.

PEO of EEE

PEO 01 – The graduate will be able to apply the Electrical and Electrical Engineering concepts to excel in higher education and research and development.

PEO 02 – The graduate will be able to demonstrate the knowledge and skills to solve real life engineering problems and design electrical systems that are technically sound, economical and socially acceptable.

PEO 03 – The graduates will be able to showcase professional skills encapsulating team spirit, societal and ethical values.

PSO of EEE

PSO 01 Students will be able to identify, formulate and solve problems using various software and other tools in the areas of Automation, Control Systems, Power Engineering and PCB designing.

PSO 02 Students will be able to provide sustainable solutions to growing energy demands.

<u>1. Scope and Objective of Course</u>

This subject will introduce the student to the principles and practice of feedback control systems, and outlines their role in modern society. The student will learn about dynamic system modelling and controller synthesis as two key elements in the development of a modern control system, and the subject will emphasise the usage of transform theory to facilitate both of these elements. This subject will also introduce techniques for the practical implementation of the synthesized controller.

Topics that are covered in this subject include: introduction to feedback, system modelling using Laplace transform and state space representations, time domain and frequency domain design specifications, SISO control, prototype controllers based on proportional + integral + derivative elements, root locus techniques, Nyquist and Bode techniques, compensation strategies, feed-forward and cascaded loops, and practical realisation issues.

2.Course Outcomes:

After the completion of course, student will be able to:

- 1. Model a practical system in transfer function form using its governing laws.
- 2. Understand the common control schemes
- 3. Apply the knowledge of control systems to apply for practical system like servomotor.
- 4. Analyze the system response and stability in both time-domain and frequency domain
- 5. Design different types of compensators using time-domain and frequency domain specifications

Sr. No.	Course Outcome
1.	Model a practical system in transfer function form using its governing laws.
2.	Understand the common control schemes
3.	Apply the knowledge of control systems to apply for practical system like servomotor.
4.	Analyze the system response and stability in both time-domain and frequency domain
5.	Design different types of compensators using time-domain and frequency domain specifications

CO-PO degree of Mapping

PSO 1. Acquire the knowledge of control systems and extend it to apply it in modern engineering problems to deduce effective solutions.

PSO 2. Use modern engineering tools in the attempt to derive solutions to practical problems and realize the areas that needs an effective research in control systems engineering.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	Engineering knowledge	Problem analysis	Design/development of solutions	Investigation	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communications	Project management and finance	Life-long learning		
CO1	3	3	2	2	2	1	1		2	2	1	2	2	2
CO2	3	3	3	2	1	1			2	2		2	1	1
CO3	3	3	3	3	2	2			2	2		2	2	1
CO4	3	3	2	3	2	2		1	3	3	1	3	1	2
CO5	3	2	3	2	2		2	2		1		2	3	3

EE 1712 LINEAR CONTROL THEORY L-T-P: 3-0-3 Credit: 5

SYLLABUS

1. Introduction : The control system, servomechanism, servomotors, standard test signal.

Lecture : 4

2. Time response analysis : Time response of second order system, design consideration for higher order system, stability relative stability. Lecture : 6

3. The root locus technique : Concept, construction of root loci root contours systems with

transformation log. Lecture : 8

4. Frequency response analysis : Correlation between time and frequency response, bode plots,

root locus and minimum phase system log magnetic vs phase plots , stability in frequency

domain , polar plots. Lecture : 8

5. Mathematics preliminaries, Nyquest stability criteria, Assessment of relation stability using

Nyquest criteria. Lecture: 5

6. Closed loop frequency response. Lecture : 3

7. Compensation of control system : Introduction, type compensation approach to

compensation. Lecture : 8

Text Books :

1. Modern control system by Nagrath & Gopal

<u>Reference Books :</u>

- 1. Modern Control Engineering by K.Ogata, Pearson Education.
- 2. Control Engineering by Kuo.

GATE SYLLABUS

Linear Control Theory

WEIGHTAGE(10 marks)

Mathematical modeling and representation of systems Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady-state analysis of linear time invariant systems, Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead-Lag compensators; P, PI and PID controllers; State space model, State transition matrix

DARBHANGA COLLEGE OF ENGINEERING, DARBHANGA

w.e.f. - 10-02-18

Individual Time Table Faculty Name- Akhil Mohammed (EEE Department)

Day	Branch	1 (10am-10.50am)	2 (10.50am-	3(11.40am-	4(12.30pm-	Lunch (1.20pm –	5(1.50pm -	6(2.40pm-	7(3.30pm-4.20pm)
			11.40am)	12.30pm)	1.20pm)	1.50pm)	2.40pm)	3.30pm)	
Monday	EE.E.		LCT						
Tuesday	E.E.E.				LCT				
Wednesday	E.E.E.								
Thursday	E.E.E.								
Friday	E.E.E.			LCT					
Saturday	E.E.E.	LCT							

Prof . Incharge Routine D.C.E. Darbhanga Principal D.C.E., Darbhanga

Institute/College Name:	Darbhanga College of Engineering
Program Name:	B.Tech (EEE, 8 th semester)
Course Code:	031712
Course Name:	Linear Control Theory
Lecture/Tutorial(per week):	3/1
Course Credits:	5
Course Co-coordinator Name:	Mr. Akhil Mohammed

1. Scope and Objective of Course

This subject will introduce the student to the principles and practice of feedback control systems, and outlines their role in modern society. The student will learn about dynamic system modelling and controller synthesis as two key elements in the development of a modern control system, and the subject will emphasize the usage of transform theory to facilitate both of these elements. This subject will also introduce techniques for the practical implementation of the synthesized controller. Topics that are covered in this subject include: introduction to feedback, system modelling using Laplace transform and state space representations, time domain and frequency domain design specifications, SISO control, prototype controllers based on proportional + integral + derivative elements, root locus techniques, Nyquist and Bode techniques, compensation strategies, feed-forward and cascaded loops, and practical realization issues.

2.Course Outcomes:

After the completion of course, student will be able to:

- 1. Model a practical system in transfer function form using its governing laws.
- 2. Understand the common control schemes/with design specifications like transient response, stability and steady state errors.
- 3. Apply the knowledge of control systems to apply for practical systems like servomotor.
- 4. Analyze the system response and stability with time-domain and frequency domain.
- 5. Design different types of compensators using time-domain and frequency domain specifications

3. Textbooks

TB1: Ogata K., "Modern Control Engineering", Prentice Hall India,1994
TB2: M Gopal, "Control Systems, Principles and Design", Tata McGraw-Hill, 1998.
TB3: Norman S. Nise "Control System Engineering", 6th Edition, John Wiley and sons.
TB4: A. Anand Kumar, "Control Systems", PHI L earning, 2011

<u>4.Reference Books</u> RB1: Control Engineering: Theory & Practice by Bandopadhya, PH RB2: Benjamin C. Kuo, "Automatic Control Engineering", Prentice Hall of India Pvt. Ltd.

5.Other readings and relevant websites

Sl	Link of journals, Magazines, websites and Research papers
No	
1.	https://ieeexplore.ieee.org/search/searchresult.jsp?queryText=control%20systems&ranges=1
	<u>885_1909_Year</u>
2.	https://www.youtube.com/user/nptelhrd/search?query=control+systems
3.	http://nptel.ac.in/courses/108103008/29
4.	http://www.engpaper.com/research-paper-control-system.htm

6.Course plan

<u>Lecture</u> <u>No.</u>	<u>Topics</u>	<u>Web Links for</u> <u>Videos Lecture</u>	Text Books/Refe rence books/Read ing Materials	<u>Page No. of</u> <u>Text Books</u>					
1-4	Introduction The control system, servomechanism, servomotors, standard test signal. Lecture : 4	https://www.yout ube.com/watch? v=SUxVuGnF7 wI&index=19&1i st=PL692A7B91 <u>69289C4F</u>	TB1	1-9,63-70					
6-10	Time response analysis Time response of second order system, design consideration for higher order system, stability relative stability. Lecture : 6	https://www.yout ube.com/watch? v=34fYhDdZFbI &index=4&list= PL692A7B9169 289C4F	TB6	159-231					
	Asssignment-1								
11-18	The root locus techniqueConcept, construction of root lociroot contours systems withtransformation log. Lecture : 8	https://www.yout ube.com/watch? v=oA4JRcF_3nI &index=30&list =PL692A7B916 9289C4F	TB1	269-308					

19-26	Frequency response analysis Correlation between time and frequency response, bode plots, root locus and minimum phase system log magnetic vs phase plots , stability in frequency domain , polar plots. Lecture : 8	https://www.yout ube.com/watch? v=Lj5UDyfsmz w&list=PL42816 CBDEAC1E82E &index=21	TB1	398-443				
27-31	Nyquist stabilityMathematicspreliminaries,Nyquiststabilitycriteria,AssessmentofrelationstabilityusingNyquestcriteria.Lecture : 5A	https://www.yout ube.com/watch?v =VPXzeJGnGE4∈ dex=39&list=PL42 816CBDEAC1E82E	TB1	445-462				
32-34	Closed loop frequency response 6. Closed loop frequency response. Lecture : 3	https://www.yout ube.com/watch?v =Xy3OxoEQGqk&li st=PL692A7B9169 289C4F&index=40	TB1	477-486				
35-43	Compensation of control system Introduction, type compensation approach to compensation. Lecture : 8	https://www.yout ube.com/watch?v =Xgr9AA0RnSo&lis t=PL692A7B91692 89C4F&index=41	TB2	311-342, 493-521				
	Assignment 3							

7.Syllabus

Topics	<u>No. of</u> Lectures	<u>Weightages</u>
1. Introduction : The control system, servomechanism, servomotors, standard test signal.	4	9%
2. Time response analysis : Time response of second order system, design consideration for higher order system, stability relative stability.	6	14%
3. The root locus technique : Concept, construction of root loci root contours systems with transformation log.	8	19%
4. Frequency response analysis : Correlation between time and frequency response, bode plots, root locus and minimum phase system log magnetic vs phase plots , stability in frequency domain , polar plots.	8	8%
5. Mathematics preliminaries, Nyquest stability criteria, Assessment of relation stability using Nyquest criteria.	5	12%
6. Closed loop frequency response	3	7%
7. Compensation of control system : Introduction, type compensation approach to compensation.	8	19%

CO-PO degree of Mapping

Sr.No.	Course Outcome						
CO1	Model a practical system in transfer function form using its governing laws.						
CO2	Understand the common control schemes						
CO3	Apply the knowledge of control systems to apply for practical system like servomotor.						
CO4	Analyze the system response and stability in both time-domain and frequency domain						
CO5	Design different types of compensators using time-domain and frequency domain						
	specifications						

PSO 1. Acquire the knowledge of control systems and extend it to apply it in modern engineering problems to deduce effective solutions.

PSO 2. Use modern engineering tools in the attempt to derive solutions to practical problems and realize the areas that needs an effective research in control systems engineering.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	Engineering knowledge	Problem analysis	Design/development of solutions	Investigation	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communications	Project management and finance	Life-long learning		
CO1	2	2	2	2						1				
CO2	2	2	2	2										
CO3	2	2	2	2										
CO4	2	2	2	2	1	2	2	1						
CO5	2	2	2	2	1	2	2	1				1		

Evaluation and Examination Blue Prints:

Internal assessment is done through quiz tests, presentations, assignments and projects work. Two sets of question paper are asked from each faculty and out of these two, without the knowledge of faculty, one question paper is chose for the concerned examination. Examination rules and regulations are uploaded on the student's portals. Evaluation is a very transparent process and the answer sheets of sessional tests, internal assessment assignments are returned back to the students.

The components of evaluation along with their weightage followed by the university is given below:

	Sessional test-1	15%
Component-1	Sessional test-2	15%
	Sessional test-3	15%
Component-2	Assignments, Quiz's, Test, Seminars	10%
Component-3	End Term Examination	60%
Te	100%	

(From amongst the three sessional tests best of two are considered).

Institute/College Name: Darbhanga College of Engineering B.Tech (EEE, 7th semester) **Program Name:** 031712 **Course Code: Course Name:** Linear Control Theory Lecture/Tutorial(per week): 3/1 **Course Credits:** 5 **Course Co-coordinator Name:** Mr. Akhil Mohammed No. of Topics Weightages Lectures Introduction to the control system, basics 1 9% 2 Theory of servomechanism and principles Servomotors, applications in control problems 3 4 Standard test signal analysis Time response of second order system 14% 5 design consideration for higher order system 6 Time response specifications 7 Steady state errors 8 Stability of control systems 9 Stability and relative stability 10 3. The root locus technique : 11 19% Root locus plots 12 Plotting rootlocus with matlab 13 Root locus with positive feedback systems 14 15 IntroductionConcept contours systems with transformation log Transient response design via gain adjustment 16 Generalized root locus 17 Pole sensitivity 18 Frequency response analysis : Correlation between time 8% and 19 frequency response, bode plots Bode plots 20 Sketching Nyquist digram 21 Stability via Nyquist stability criterion 22 root locus and minimum phase system 23 24 log magnetic vs phase plots stability in frequency domain 25 Stability, gain margins phase margins 26

LECTURE PLAN

5. Mathematics preliminaries, Nyquist stability criteria	27	12%
Assessment of relation stability using Nyquist criteria.	28	
Relative stability analysis	29	
polar plots	30	
Sketching polar plots	31	
6. Closed loop frequency response	32	10.57
Control systems design by frequency response	33	18%
Experimental determination of transfer functions	34	
7. Compensation of control system : Introduction, type compensation approach to compensation.	35	22%
lag compensations using root locus	36	
lead compensations using root locus	37	
Lag-lead compensations using root locus	38	
lag compensations using frequency response	39	
lead compensations using frequency response	40	
Lag-lead compensations using frequency response	41	
PID Controllers	42	
Introduction to state space	43	

SYLLABUS COMPLETION

Institute/College Name:	Darbhanga College of Engineering		
Program Name:	B.Tech (EEE, 7 th semester)		
Course Code:	031712		
Course Name:	Linear Control Theory		
Lecture/Tutorial(per week):	3/1		
Course Credits:	5		
Course Co-coordinator Name:	Mr. Akhil Mohammed		
<u>Topics</u>		<u>No. of</u> Lectures	<u>Weightages</u>
Introduction to the control system, basics		1	9%
Theory of servomechanism and principles		2	570
Servomotors, applications in control problem	s	3	
Standard test signal analysis		4	
Time response of second order system		5	14%
design consideration for higher order system		6	
Time response specifications		7	
Steady state errors		8	
Stability of control systems		9	
Stability and relative stability		10	
3. The root locus technique :		11	19%
Root locus plots		12	
Plotting rootlocus with matlab		13	
Root locus with positive feedback systems		14	
IntroductionConcept contours systems with transformation log		15	
Transient response design via gain adjustment		16	
Generalized root locus		17	
Pole sensitivity	18		
Frequency response analysis : Correlation between time and		19	8%
frequency response, bode plots		20	
Doue piols Skatabing Nyquiat digram	20		
Stability via Nyquist stability criterion	21		
root locus and minimum phase system	22		
log magnetic vs phase plots	23		
stability in frequency domain	25		
Stability, gain margins phase margins	25		

5. Mathematics preliminaries, Nyquist stability criteria	27	12%
Assessment of relation stability using Nyquist criteria.	28	
Relative stability analysis	29	
polar plots	30	
Sketching polar plots	31	
6. Closed loop frequency response	32	
Control systems design by frequency response	33	8%
7. Compensation of control system : Introduction, type compensation		
approach to compensation.	35	15%
lag compensations using root locus	36	
lead compensations using root locus	37	
Lag-lead compensations using root locus	38	
lag compensations using frequency response	39	
		-
TOTAL	85%	

Darbhanga College of Engineering, Darbhanga

7th Semester Electrical and Electronics Engineering Subject Name:-LINEAR CONTROL THEORY-RESULTS

S.N.	Registration No.	Student Name	TOTAL=20
1	17110111001	RAUSHAN MISHRA	18
2	17110111002	GULSHAN KUMAR	16
3	17110111003	ROSHAN KUMAR	14
4	17110111004	ARUNODAY LAL	20
5	17110111005	PRANTIKA SUMAN	18
6	17110111006	HIMANI	18
7	17110111007	CHANDAN KUMAR	14
8	17110111008	SUBHKANT SAHU	16
9	17110111009	SHAMIM AKHATAR	12
10	17110111010	AKSHAY KUMAR	16
11	17110111011	SUBHAM KUMAR	14
12	17110111012	PRITY SINHA	14
13	17110111013	FUDAN KUMAR	8
14	17110111014	JYOTI KUMARI	14
15	17110111015	GAURAV KUMAR	16
16	17110111016	ARVIND KUMAR	18
17	17110111017	GOVIND KUMAR	14
18	17110111018	KESHAV KUMAR	16
19	17110111019	MUNNA KUMAR	14
20	17110111020	ABHIJEET KUMAR	14
21	17110111021	AJAY RAJ	14
22	17110111022	DEEPIKA KUMARI	20
23	17110111023	LEEPI DAS	14
24	17110111024	VIKASH KUMAR	16
25	17110111025	UDAY KUMAR YADAV	18
26	17110111026	HEMANT KUMAR	16
27	17110111027	SHUBHAM KUMAR ANAND	16
28	17110111028	MD TAUHID	16
29	17110111029	MD ASIF	20
30	17110111031	AMAN KUMAR	16
31	17110111032	AMAN JAISWAL	18
32	17110111033	RAVI NAYAN KISHOR	18
33	17110111034	DILIP KUMAR	18

34	17110111035	ANIL KUMAR	16
35	17110111036	MD RAFIULLAH	14
36	17110111037	SHASHANK KUMAR	16
37	17110111038	SAKSHI SUMAN	16
38	17110111039	SUNIL KUMAR RAM	14
39	17110111041	RAHUL KUMAR	18
40	17110111042	SATYAM KUMAR	16
41	17110111043	DIPU KUMAR MISHRA	12
42	17110111044	VIKASH KUMAR	18
43	17110111045	SAROJ KUMAR	14
44	17110111046	AJAY KUMAR SINGH	14
45	17110111047	MD NAYEEM	14
46	17110111048	MD SHAMIM AKHATAR	14
47	17110111049	DEEPA KUMARI	18
48	17110111050	SUBHASH KUMAR	14
49	17110111051	PRIYA KUMARI	18
50	17110111052	AMRENDRA KUMAR	16
51	17110111053	RANI RUPA	18
52	17110111054	AMAN KUMAR SRIVASTVA	20
53	17110111055	ADITYA KUMAR	14
54	17110111056	RAUSHAN KUMAR RAM	14
55	17110111057	POOJA KUMARI	18
56	17110111058	AVINASH KUMAR MISHRA	14
57	17110111059	RAHUL KUMAR	16
58	17110111060	VARUN KUMAR	18
59	17110111061	BRAJESH KUMAR	14
60	17110111063	ALOK KUMAR	16
61	17110111064	ROHIT KUMAR SAH	18
62	17110111065	MAYANK RAJ	16
63	18110111901	RAJESH KUMAR	16
64	18110111902	NAVEEN KUMAR	14
65	18110111903	NIKITA RAJ	18
66	18110111904	RITU RAJ	16
67	18110111905	SONAKSHI KUMARI	16
68	18110111906	PAWAN KUMAR	16
69	18110111907	NITISH KUMAR BANTY	16
70	18110111908	ADITYA CHANDRA RANIAN	16

71	18110111909	KUMARI SUPRABHA	16
72	18110111910	BRAJ KISHORE	18
73	18110111911	SAKSHI KUMARI	20
74	18110111912	VIDYAPATI CHAURASIYA	14
75	17110111904	LALIT KUMAR RAM	16
76	17110111907	DEEPAK KUMAR PRABHAT	18

Sign:-

Darbhanga College of Engineering, Darbhanga

7th Semester Electrical and Electronics Engineering

S.N.	Registration No.	Student Name	
1	17110111001	RAUSHAN MISHRA	
2	17110111002	GULSHAN KUMAR	
3	17110111003	ROSHAN KUMAR	
4	17110111004	ARUNODAY LAL	
5	17110111005	PRANTIKA SUMAN	
6	17110111006	HIMANI	
7	17110111007	CHANDAN KUMAR	
8	17110111008	SUBHKANT SAHU	
9	17110111009	SHAMIM AKHATAR	
10	17110111010	AKSHAY KUMAR	
11	17110111011	SUBHAM KUMAR	
12	17110111012	PRITY SINHA	
13	17110111013	FUDAN KUMAR	
14	17110111014	JYOTI KUMARI	
15	17110111015	GAURAV KUMAR	
16	17110111016	ARVIND KUMAR	
17	17110111017	GOVIND KUMAR	
18	17110111018	KESHAV KUMAR	
19	17110111019	MUNNA KUMAR	
20	17110111020	ABHIJEET KUMAR	
21	17110111021	AJAY RAJ	
22	17110111022	DEEPIKA KUMARI	
23	17110111023	LEEPI DAS	
24	17110111024	VIKASH KUMAR	
25	17110111025	UDAY KUMAR YADAV	
26	17110111026	HEMANT KUMAR	
27	17110111027	SHUBHAM KUMAR ANAND	
28	17110111028	MD TAUHID	
29	17110111029	MD ASIF	
30	17110111031	AMAN KUMAR	
31	17110111032	AMAN JAISWAL	
32	17110111033	RAVI NAYAN KISHOR	
33	17110111034	DILIP KUMAR	

34	17110111035	ANIL KUMAR		
35	17110111036	MD RAFIULLAH		
36	17110111037	SHASHANK KUMAR		
37	17110111038	SAKSHI SUMAN		
38	17110111039	SUNIL KUMAR RAM		
39	17110111041	RAHUL KUMAR		
40	17110111042	SATYAM KUMAR		
41	17110111043	DIPU KUMAR MISHRA		
42	17110111044	VIKASH KUMAR		
43	17110111045	SAROJ KUMAR		
44	17110111046	AJAY KUMAR SINGH		
45	17110111047	MD NAYEEM		
46	17110111048	MD SHAMIM AKHATAR		
47	17110111049	DEEPA KUMARI		
48	17110111050	SUBHASH KUMAR		
49	17110111051	PRIYA KUMARI		
50	17110111052	AMRENDRA KUMAR		
51	17110111053	RANI RUPA		
52	17110111054	AMAN KUMAR SRIVASTVA		
53	17110111055	ADITYA KUMAR		
54	17110111056	RAUSHAN KUMAR RAM		
55	17110111057	POOJA KUMARI		
56	17110111058	AVINASH KUMAR MISHRA		
57	17110111059	RAHUL KUMAR		
58	17110111060	VARUN KUMAR		
59	17110111061	BRAJESH KUMAR		
60	17110111063	ALOK KUMAR		
61	17110111064	ROHIT KUMAR SAH		
62	17110111065	MAYANK RAJ		
63	18110111901	RAJESH KUMAR		
64	18110111902	NAVEEN KUMAR		
65	18110111903	NIKITA RAJ		
66	18110111904	RITU RAJ		
67	18110111905	SONAKSHI KUMARI		
68	18110111906	PAWAN KUMAR		
69	18110111907	NITISH KUMAR BANTY		
70	18110111908	ADITYA CHANDRA RANJAN		

71	18110111909	KUMARI SUPRABHA		
72	18110111910	BRAJ KISHORE		
73	18110111911	SAKSHI KUMARI		
74	18110111912	VIDYAPATI CHAURASIYA		
75	17110111904	LALIT KUMAR RAM		
76	17110111907	DEEPAK KUMAR PRABHAT		

Sign:-