DARBHANGA COLLEGE OF ENGINEERING

COURSE FILE OF

Operational Research (021723)

Mr. Rajat Gupta **Assistant Professor** Department of Mechanical Engineering

College Name	Darbhanga College of Engineering		
Program Name	B.Tech Mechanical Engineering		
Course Name	Operational Research		
Course Code	02 1723	Course Credit	3
Lecture/Tutorial	03/0		
Per Week			
Course Coordinator	Mr. Rajat Gupta		
Name			

Vision

• To strengthen the region through imparting superior quality technical education and research; which enables the fulfillment of industrial challenge and establish itself as a Centre of Excellence in the field of Mechanical Engineering.

Mission

- To build an academic environment of teaching and lifelong learning for students to make them competitive in context with advance technological, economical and ecological changes.
- To enable the students to enhance their technical skills and communications through research, innovation and consultancy projects.
- To share and explore the accomplishments through didactic, enlightenment, R & D
 programs with technical institution in India and abroad.

Student's Outcomes

Students who complete the B.TECH degree in ME will be able to:

- 1. An ability to apply the knowledge of mathematics, basic sciences and engineering concepts to solve the complex engineering problems.
- 2. The ability to conduct experiments and to critically analyze and interpret the experimental data to reach at substantial outcomes.
- 3. An ability to design systems, components, or processes to meet appropriate needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- 4. An ability to identify, formulates, and solves the complex engineering problems.
- 5. An ability to function on multi-disciplinary teams that leads the multi-disciplinary projects.
- 6. An understanding of professional and ethical responsibility.
- 7. An ability to communicate effectively with written, oral, and visual means.
- 8. An ability to understand the impact of engineering solutions in a global, environmental, economical and societal context.
- 9. An ability to recognize the need to engage in life-long learning.
- 10. An ability to attain knowledge of contemporary issues.

- 11. An ability to use the techniques, skills, and modern tools necessary for Mechanical engineering practice.
- 12. Possess ability to estimate costs, estimate quantities and evaluate materials for design and manufacturing purposes.

Course Outcomes

At the end of the course students will be able to

- 1. Define and formulate linear programming problems and appreciate their limitations.
- Solve linear programming problems using appropriate techniques and optimization solvers, interpret the results obtained and translate solutions into directives for action.
- 3. Conduct and interpret post-optimal and sensitivity analysis and explain the primal-dual relationship.
- 4. Develop mathematical skills to analyse and solve integer programming and network

Reference books

- 1. Rader, D. J. 2010, Deterministic Operations Research: Models and Methods in Linear Optimization, J. Wiley & Sons
- 2. Taha, H. A. 2007, Operations Research, 8th edn, Pearson
- 3. Taylor, B. W. III 2013, Introduction to Management Science, 11th edn, Prentice Hall
- 4. Schrage, L. 1997, Optimization Modeling with LINDO, 5th edn, Thomson
- 5. Winston, W. L. 2004, Operations Research: Applications and Algorithms, 4th edn, Thomson
- 6. Williams, H. P. 2013, Model Building in Mathematical Programming, 5th edn, Wiley

7. Hillier, F. S. and Lieberman, G. J. 2010, Introduction to Operations Research, 9th edn, McGraw-Hill.

Evaluation Scheme

Component 1	Mid semester examination	20
Component 2	class test	5
Component 3	TA	5
Component 4	End Semester Examination	70
Total		100

Syllabus

Topics	No. of lectures	Weightage
Introduction - Elementary concepts, objectives of operations	10	25%
research, Applications of OR in decision-making. Modeling		
in Operation Research. Linear Programming: Introduction,		
mathematical formulation of the problem, Graphical solution.		
Simplex technique for solving simple LP problems.		
Transportation and assignment models.	10	25%
Queuing theory (single and double channel)		
Inventory Control - Introduction and general notations,	10	25%

Economic lot size models with known demand		
CPM and PERT and CPM-crashing networks	5	12%
Dynamic programming. Sequencing model (n jobs-2	5	13%
machines), Replacement problems and Reliability theory		

7. This document is approved by

Designation	Name	Signature
Course Co-ordinator	Rajat Gupta	
HOD	Mr.Vishnu Singh	
	<u> </u>	
Principal	Prof. Achintya	
	·	