# **Darbhanga College of Engineering**



**Course File** 

of

## HYDRAULIC ENGINEERING (PCC-CE302)

**Faculty Name:** 

Mr. Loknath Kumar

**Assistant Professor** 

**Department of Civil Engineering** 



विज्ञान एवं प्रावैधिकी विभाग Department of Science and Technology Government of Bihar

## CONTENTS

- 1. Cover Page & Content
- 2. Vision of the Department
- 3. Mission of the department
- 4. PEO's and PO's
- 5. Course objectives & Course outcomes (CO's)
- 6. Mapping of CO's with PO's
- 7. Course Syllabus and GATE Syllabus
- 8. Time table
- 9. Student list
- 10. Course Handout
- 11. Lecture Plan
- 12. Assignment sheets
- 13. Tutorial Sheets
- 14. Sessional Question Papers
- 15. Old End Semester Exam (Final Exam) Question Papers
- 16. Question Bank
- 17. Power Point Presentations
- 18. Lecture Notes
- 19. Reference Materials
- 20. Results
- 21. Result Analysis
- 22. Quality Measurement Sheets
  - a. Course End Survey
  - b. Teaching Evaluation
- 23. CO-PO attainment

## **Department of Civil Engineering**

## Darbhanga College of Engineering Darbhanga

#### **Vision of Department**

To bring forth competent engineers to serve national & multi-national industries and society and, encouraging them towards higher studies.

## **Mission of Department**

- M1. To nurture graduates into competent and technologically capable professionals through motivated teaching-learning ambience and by collaborating with relevant industries.
- M2. To encourage graduates towards research and innovation in the field of civil engineering.

M3. To inculcate humanitarian ethical values in graduates through various socialcultural activities.

## **Program Educational Objectives (PEOs)**

**PEO1.** The graduates will be able to demonstrate knowledge and skills of civil engineering to solve engineering problems related to structural design.

**PEO2.** The graduates will be able to function in the evolving research and development as design consultant in the relevant industry using modern software tools.

**PEO3.** The graduates will be able to showcase professional skills encompassing societal and ethical values.

## **Program Outcomes (POs):**

| PO1 | <b>Engineering knowledge</b> : An ability to apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to get the solution of the engineering problems. |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO2 | <b>Problem analysis:</b> Ability to Identify, formulates, review research literature, and analyze complex engineering problems.                                                                        |
| PO3 | <b>Design/development of solutions:</b> Ability to design solutions for complex engineering problems by considering social, economical and environmental aspects.                                      |
| PO4 | <b>Conduct investigations of complex problems:</b> Use research-based knowledge to design, conduct analyse experiments to get valid conclusion.                                                        |
| PO5 | <b>Modern tool usage:</b> ability to create, select, and apply appropriate techniques, and to model complex engineering activities with an understanding of the limitations.                           |
| PO6 | The engineer and society: Ability to apply knowledge by considering social health,                                                                                                                     |

|      | safety, legal and cultural issues.                                                                                                            |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| PO7  | <b>Environment and sustainability:</b> Understanding of the impact of the adopted engineering solutions in social and environmental contexts. |
| PO8  | <b>Ethics</b> : Understanding of the ethical issues of the civil engineering and applying ethical principles in engineering practices.        |
| PO9  | <b>Individual and teamwork:</b> Ability to work effectively as an individual or in team, as a member or as a leader.                          |
| PO10 | <b>Communication:</b> An ability to communicate clearly and effectively through different modes of communication.                             |
| PO11 | Project management and finance: Ability to handle project and to manage finance related issue                                                 |
| PO12 | <b>Life-long learning:</b> Recognize the need for, and have the preparation and ability to engage in independent and life-long learning.      |

## **Course Objectives**

To introduce the students about various hydraulic engineering problems like open channel flows and hydraulic machines. At the completion of this course the students will be able to relate the theory and practical problems in hydraulic engineering.

## Course Outcomes (Students will be able to)

- 1. Understand the boundary layer analysis and their separation.
- 2. Analyze the flow occurring in open channel and velocity distribution.
- 3. Evaluate energy equation and momentum equation with respect to uniform flow.
- 4. Understand characteristics of surface profile by graphical and numerical approach in non-uniform flow.
- 5. Create models related to hydraulic jump and web based modeling in water resource engineering.

**CO-PO MAPPING** 

| Cos | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 | PSO1 | PSO2 |
|-----|----|----|----|----|----|----|----|----|----|-----|-----|-----|------|------|
| CO1 | 2  | 1  | 1  | 0  | 1  | 2  | 1  | 2  | 2  | 0   | 0   | 3   | 1    | 2    |
| CO2 | 2  | 0  | 0  | 1  | 0  | 3  | 0  | 1  | 1  | 3   | 0   | 2   | 3    | 3    |
| CO3 | 1  | 0  | 0  | 1  | 0  | 2  | 0  | 3  | 2  | 3   | 0   | 2   | 2    | 1    |
| CO4 | 1  | 0  | 0  | 1  | 0  | 2  | 0  | 3  | 3  | 3   | 0   | 2   | 3    | 2    |
| CO5 | 2  | 1  | 1  | 0  | 1  | 2  | 1  | 2  | 2  | 0   | 0   | 3   | 1    | 2    |

## Syllabus:

| PCC-CE302 Hydraulic Engineering | 2L:0T:2P | 3 credits |
|---------------------------------|----------|-----------|
|---------------------------------|----------|-----------|

#### **Objectives:**

To introduce the students to various hydraulic engineering problems like open channel flows and hydraulic machines. At the completion of the course, the student should be able to relate the theory and practice of problems in hydraulic engineering

**Module 1**: Boundary Layer Analysis-Assumption and concept of boundary layer theory. Boundary-layer thickness, displacement, momentum & energy thickness, laminar and Turbulent boundary layers on a flat plate; Laminar sub-layer, smooth and rough boundaries. Local and average friction coefficients. Separation and Control.

**Module 2:** Introduction to Open Channel Flow-Comparison between open channel flow and pipe flow, geometrical parameters of a channel, classification of open channels, classification of open channel flow, Velocity Distribution of channel section.

**Module 3:** Uniform Flow-Continuity Equation, Energy Equation and Momentum Equation, Characteristics of uniform flow, Chezy's formula, Manning's formula. Factors affecting Manning's Roughness Coefficient "n .Most economical section of channel. Computation of Uniform flow, Normal depth.

**Module 4:** Non-Uniform Flow- Specific energy, Specific energy curve, critical flow, discharge curve Specific force Specific depth, and Critical depth. Channel Transitions. Measurement of Discharge and Velocity – Venturi Flume, Standing Wave Flume, Parshall Flume, Broad Crested Weir. Measurement of Velocity- Current meter, Floats, Hot-wire anemometer. Gradually Varied Flow-Dynamic Equation of Gradually Varied Flow, Classification of channel bottom slopes, Classification of surface profile, Characteristics of surface profile. Computation of water surface profile by graphical, numerical and analytical approaches. Direct Step method, Graphical Integration method and Direct integration method.

**Module 5:**Hydraulic Jump- Theory of hydraulic jump, Elements and characteristics of hydraulic jump in a rectangular Channel, length and height of jump, location of jump, Types, applications and location of hydraulic jump. Energy dissipation and other uses, surge as a moving hydraulic jump. Positive and negative surges.

**Module 6:** Computational Fluid Dynamics: Basic equations of fluid dynamics, Grid generation, Introduction to in viscid incompressible flow, Boundary layer flow as applicable to C.F.D. Hydro informatics: Concept of hydro informatics –scope of internet and web based modeling in water resources engineering.

#### **Practical Work:**

- 1. Flow Visualization
- 2. Studies in Wind Tunnel
- 3. Boundary Layer

- 4. Flow around an Aerofoil / circular cylinder
- 5. Uniform Flow
- 6. Velocity Distribution in Open channel flow
- 7. Venturi Flume
- 8. Standing Wave Flume
- 9. Gradually Varied Flow
- 10. Hydraulic Jump
- 11. Flow under Sluice Gate
- 12. Flow through pipes
- 13. Turbulent flow through pipes
- 14. Flow visualization
- 15. Laminar flow through pipes
- 16. Major losses / Minor losses in pipe

#### **Text/Reference Books:**

- 1. Hydraulics and Fluid Mechanics, P.M. Modi and S.M. Seth, Standard Book House
- 2. Theory and Applications of Fluid Mechanics, K. Subramanya, Tata McGraw Hill.
- 3. Open channel Flow, K. Subramanya, Tata McGraw Hill.
- 4. Open Channel Hydraulics, Ven Te Chow, Tata McGraw Hill.
- 5. Burnside, C.D., "Electromagnetic Distance Measurement," Beekman Publishers, 1971.

|          |             | 5th Se                | emester        | w.e.f:       |                        |
|----------|-------------|-----------------------|----------------|--------------|------------------------|
| DAY      | Dept        | . 09:00-11:00         | 11:00-01:00    | 01:00-02:0   | 02.02.2.2              |
|          | EEE         | CS                    | PS-I           | 01.00-02.0   | 02:00-5:00             |
| MONDA    | Y CE        | EE-1                  | MOM            | -            | V. PE Lab              |
|          | CSE         | REMIDAL CLASSES       | DBMS           |              | V. HE LAB              |
|          | ME          | HT                    | F M/C          |              | IVIOUC                 |
|          | EEE         | V. CS Lab             | ADC            |              | Interaction            |
| TUESDAY  | CE          | H & WRE               | HE             | -            | M Goo Test Lat         |
|          | CSE         | AI                    | DBMS           |              | REMIDAL CLASSE         |
|          | ME          | MP                    | V.REMIDAL LAB  | -            | ALIVIIDAL CLASSE       |
|          | EEE         | PE                    | CS             | 1            | V/ DS LLab             |
| WEDNESDA | AY CE       | ADCS                  | MOM            | 1            | V. FS-ILdD             |
|          | CSE         | SWE                   | AI             |              | V. DRMS Lab            |
|          | ME          | HT                    | EIKT           | 1            | C C DIVIS LaD          |
|          | ELE         | REMIDAL CLASSES       | PS-I           | LUNCH        | V. CSIah               |
| THURSDAY | CE          | GEO TECH-1            | TRE            | 1            | V FE-1LAP              |
|          | CSE         | V. DBMS Lab           | SWE            | 1            | V. LE-I LAB            |
|          | ME          | KOM                   | V. REMIDAL LAB |              | Jennar                 |
|          | EEE         | V. PE Lab             | PE             |              | N/ ADC lab             |
| FRIDAY   | CE          | COI                   | ADCS           | 1            | GEO TECH I             |
|          | LSE         | PS                    | FLAT           |              | Interchin              |
|          | IVIE        | MP                    | F M/C          | 1            | intership              |
|          | ELL         | Intership             | ADC            | 1            | REMIDAL CLASSES        |
| SATURDAY | CE          | EE-1                  | TRE            |              | V. H& W/RELAD          |
|          | LSE         | PS                    | FLAT           |              | MC 501                 |
|          | I ME        | КОМ                   | V. REMIDAL LAB |              | WIC JUL                |
|          | EEE         | (5th Sem)             |                |              |                        |
| SN       | Subject     | Faculty               |                | ME (5th Se   | m)                     |
| 1        | PS-1        | Mr. Tabish Shanu      | SN.            | Subject      | Faculty                |
| 2        | CS          | Mr. Saniay Kumar      | 1              | HT           | Mr. Madhav Ram         |
| 3        | PE          | Mr. Abhishek Sharma   | 2              | F M/C        | Mr. Prabhakar Kumar    |
| 4        | ADC         | Dr Ravi Ranjan        | 3              | MP           | Mr. Rajat Gupta        |
| 5        | Intership   | All Faculty           | 4              | KOM          | Mr. Prashant Kr. Singh |
| 6        | MOOC        | All Faculty           | 3              | EIKT         | Mr. Prashant Kr. Singh |
|          | CE (        | 5th Sem)              | 0              | MOOC         | Mr. Vikash Kumar       |
| SN.      | Subject     | Faculty               | ex: 1          | CSE (5th Ser | n)                     |
| 1        | MOM         | Mr. Ravi Ranjan Kumar | SN.            | Subject      | Faculty                |
| 2        | HE          | Mr. Loknath Kumar     | 2              | DBMS         | Mr. Akhilesh Kumar     |
| 3        | ADCS        | Mr. S. S. Chhoudhary  | 2              | SWE          | Mr. Sunil Kumar Sahu   |
| 4        | Geo Tech -I | Mr. Ahsan Rabbani     | 3              | Al           | Mr. Dhirendra Kumar    |
| 5        | H & WRE     | Mr. Prashant Kumar    | 4              | FLAT         | Mr. Ajit Kumar Gupta   |
| 6        | EE-1        | Mr. Jitendra Kumar    | 5              | PS           |                        |
| 7        | TE          | Mr. Aditya Kumar      | 7              | MOOC         | Anand Kamal            |
| 8        | COI         | Mr. Loknath Kumar     | 0              | Intership M  | Mr. Sunil Kumar Sahu   |
| 19       | Intership   | All Faculty           | 0              | MOOC N       | Vir Anand Kamal        |
| Torla    | 120         |                       |                |              |                        |

A set Rouline Incharge

Routine Incharge

DCE Stanga

List of Students: Attached Lecture Notes: Attached Result: Awaited