DARBHANGA COLLEGE OF ENGINEERING

DARBHANGA

COURSE FILE

OF

Direct Energy Conversion

(EE 031828)

DEEPAK SINGH

ASSISTANT PROFESSOR

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

विज्ञान एवं प्रावैधिकी विभाग Department of Science and Technology Government of Bihar **Vision of EEE**: - To bring forth engineers with an emphasis on higher studies and a fervour to serve national and multinational organizations and, the society.

Mission of EEE: -

M1: - To provide domain knowledge with advanced pedagogical tools and applications.

M2: - To acquaint graduates to the latest technology and research through collaboration with industry and research institutes.

M3: - To instil skills related to professional growth and development.

M4: - To inculcate ethical valued in graduates through various social-cultural activities.

PEO of EEE

PEO 01 – The graduate will be able to apply the Electrical and Electrical Engineering concepts to excel in higher education and research and development.

PEO 02 – The graduate will be able to demonstrate the knowledge and skills to solve real life engineering problems and design electrical systems that are technically sound, economical and socially acceptable.

PEO 03 - The graduates will be able to showcase professional skills encapsulating team spirit, societal and ethical values.

Program Outcomes of B.Tech in Electrical and Electronics Engineering

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSO of EEE

PSO 01 Students will be able to identify, formulate and solve problems using various software and other tools in the areas of Automation, Control Systems, Power Engineering and PCB designing.

PSO 02 Students will be able to provide sustainable solutions to growing energy demands.

Course Description

This course introduces principles and technologies for converting heat into electricity via solidstate devices. The first part of the course discusses thermoelectric energy conversion and thermoelectric materials, thermionic energy conversion, and photovoltaic.

Course Objectives

To impart the knowledge of basics of different non-conventional types of power generation & power plants in detail so that it helps them in understanding the need and role of Non-Conventional Energy sources particularly when the conventional sources are scarce in nature.

After the completion of this course the students will be able to:

CO1: Remember the different kinds of energy sources.

CO2: Analyze the different technique and the method for extraction and conversion of energy from different sources.

CO3: Understand the problem that affect for the power loss in renewable energy.

CO4: Evaluation and analyze the efficiency and its characteristics of renewable energy sources.

CO5: Develop the efficient technique and tools for renewable energy.

Mapping of CO's with PO's

CO-PO MAPPING

PSO1. Students should be able to identify, formulate and solve problems in the areas of automation, control systems and power engineering.

PSO2. Students will be able to provide sustainable solutions to growing energy demands.

	Sr. No.	Cou	rse Ou	itcome	e							PO			
	1.	031	828.1	Remen	nber th	e diffe	rent ki	nds of	energy	source	es.	PO1, PO2, PO3, PO4,			
									PO5, PO7, PO10,						
		0.010		A 1	.1		1	•	1.1	.1	1.6	PSO1, I		DO 1	_
	2.				e the d								02, PO3		
		extra	action	and co	nversio	n of ei	nergy f	rom di	fferent	source	es.	,	07, PO8,	, PO10,	
												PO11, I			
	3.				stand th		plem th	at affe	ct for t	he pow	ver	,	O2, PO3		
		loss	in ren	ewable	e energ	у.							07,PO8,	, PO9,	
												PSO2			
	4.				tion an		-		-	nd its		,	O2, PO3		
		cha	racteri	stics of	renew	able er	nergy s	sources	•			,	07,PO1	0,	
												PSO2.			
	5.				p the e	fficier	t techr	nique a	nd tool	ls for			O2, PO3		
		rene	ewable	energ	у.								06, PO7		
			r	1	1		1	1	1	1			SO1,PS		
Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outcom	es														
		En	Pro	t o	Inv	M	Th	En sus	Ethics	Indivi work	Co	Project manage	Lii		
		Engineering knowledge	Problem analysis	Design/devel t of solutions	Investigation	ode	The engineer and society	Environment and sustainability	nics	livi ırk	Communications	Project management and	Life-long learning		
		eer	em	n/d olut	iga	rn t	ngi y	onr	•	dua	nun	gen	guo		
		ing ge	ana	eve	tio	00	nee	nen		al a	nica	nen	g le		
		• •	alys	slot	n	l us	ar a	nt ar Y		nd	tio	t ai	arn		
			is	Design/developmen t of solutions		Modern tool usage	nd	nd		Individual and team work	ns	bſ	ing		
				'n						в					
031828.		3	2	2	2	1		2			1			1	2
Rememb															
	kinds of														
energy s		_		_	_			_			_				
031828.		3	3	3	3	1		2	1		2	1		1	3
Analyse															
different															
techniqu And the															
for extra															
and conv															
of energ															
	sources.														
Course		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outcom	es														

	Engineering knowledge	Problem analysis	Design/developme nt of solutions	Investigation	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communications	Project management and	Life-long learning		
031828.3 Understand the problem that affect for the power loss in renewable energy.	3	3	2	2	1		3	1	1					2
031828.4 Evaluation and analyse the efficiency and its characteristics of renewable energy sources.	2	2	1	1	1		2			1				2
031828.5 Develop the efficient technique and tools for renewable energy.	2	1	3	1	2	1	2		1		1		1	3

B. Tech. VIII Semester (EEE)

EE- 031828 Direct Energy Conversion

L T P/D	Total	Max Marks: 100	
3-1-0	4	Final Exam:	70 Marks
		Sessional:	20 Marks
		Internals:	10 Marks.

Direct Energy Conversion

- 1. UNIT 1: Introduction: Energy sources, Energy conversion chart, Direct Energy Conversion (DEC) devices, General representation of DEC devices
- 2. UNIT 2: Thermoelectric Power Generation: Introduction, Thermoelectric effects, Thermodynamic analysis of thermoelectric generator, Maximum thermal efficiency and maximum power output, Single stage and multistage generators, thermoelectric materials, Applications.
- 3. UNIT 3: Fuel Cells : Introduction, Principle of fuel cell operation and different types of fuel-cells reactions, electrochemical thermodynamics, Relation of cell potential to thermodynamic variables, Cell efficiency, Polarization losses, Types of fuel cells, Performance characteristics, Applications.
- 4. UNIT 4: Solar Cells : Introduction, Basic theory of pn junction photovoltaic converters, Characteristics of solar radiation, Typical schematic representation of a solar cell and the idealized equivalent circuit, Basic characteristics, power and efficiency, Materials for photovoltaic conversion and cell fabrication, Silicon, Cadmium Sulphide and Gallium Arsenide cells, Application, System design methodology.
- 5. UNIT 5: MHD Generator: Introduction, Gaseous conductors, Seeding, MHD equations, Operating range of an MHD duct, Different types of MHD generators, Thermodynamic analysis of linear constant velocity MHD generator, Electrical power output and efficiency, Adiabatic efficiency, Introduction to liquid MHD generator.
- 6. **UNIT 6: Fusion Power**: Principles of fusion power production, Advantages of fusion power, Problems in achieving controlled thermonuclear reactions, Plasma confinement, heating and diagnostics, Fusion devices.
- 7. UNIT 7: Wind Power: Introduction to Wind Power Generation.

Books:

- 1. "Direct Energy Conversion" by M.All Kettani, Addison-Wesley, 1970.
- 2. "Direct Energy Conversion" by S.W.Angrist, Allyn & Bacon, Boston, 4th Edn., 1982.
- 3. "Direct energy Conversion" by S.L.Soo, Prentice Hall, 1968. 3 Reference

Course Plan

Institute / College Name :	DARBHANGA COLLEGE OF ENGINEERING				
Program Name	B.Tech (EEE, 8 th semester)				
Course Code	031828				
Course Name	DIRECT ENERGY CONVERSION				
Lecture / Tutorial (per week):	3/1	Course Credits	4		
Course Coordinator Name	MR. DEEPAK SINGH				

1. Scope and Objectives of the Course

To enable students to gain knowledge and understanding in the following aspects:

- **Remember** the different kinds of energy sources.
- Analyze the different technique and the method for extraction and conversion of energy from different sources.
- Understand the problem that affect for the power loss in renewable energy.
- Evaluation and analyze the efficiency and its characteristics of renewable energy sources.
- **Develop** the efficient technique and tools for renewable energy.

2. <u>Textbooks</u>

TB1: 'Direct Energy Conversion" by M.All Kettani, Addison-Wesley, 1970.

TB2: "Direct Energy Conversion" by S.W.Angrist, Allyn & Bacon, Boston, 4thEdn., 1982.

3. <u>Reference Books</u>

RB1: "Direct energy Conversion" by S.L.Soo, Prentice Hall, 1968.

Other readings and relevant websites

S.No. | Link of Journals, Magazines, websites and Research Papers

1.	https://en.wikipedia.org/wiki/Direct_energy_conversion
2.	http://www.dtic.mil/dtic/tr/fulltext/u2/627658.pdf
3.	http://onlinelibrary.wiley.com/doi/10.1111/j.1559-3584.1979.tb04331.x/pdf

4. Course Plan

Lecture Number	Date of Lecture	Topics	Web Links for video lectures	TextBook/ReferenceBook/Otherreadingmaterial	Page numbers of Text Book(s)
1-4		Introduction		TB1, RB1	1-20
		Energy sources, Energy conversion chart, Direct Energy Conversion (DEC) devices, General representation of DEC devices	https://www.youtu be.com/watch?v=g iXuabYgI3A		
	1	Assi	gnment-1		<u> </u>
5-11		Thermoelectric Power Generation		RB1	76-98
		Introduction, Thermoelectric effects, Thermodynamic analysis of Thermoelectric generator, Maximum thermal efficiency and maximum power output, Single stage and multistage generators, Thermoelectric materials, Applications.	https://www.youtu be.com/watch?v=9 YLJ-Wrye8Q	https://www.electric al4u.com/thermoelec tric-power- generators-or- seebeck-power- generation	
		Tutorial-1	l, Assignment-2		
12-18		Fuel Cells		TB1, RB1	35-42
		Introduction, Principle of fuel-cell operation and different types of fuel- cells reactions, electrochemical thermo-	https://www.youtu be.com/watch?v= mpHZWYpKDJg	http://nptel.ac.in/cou rses/108105066/9	

	dynamics, Relation of	[
	cell potential to thermodynamic variables, Cell efficiency, Polarization losses, Types of fuel cells,			
	Performance characteristics, Applications.			
	Mid-Semester Exam (Sylla	bus covered from 1.	-20 lectures)	
19-25	Solar Cells		TB1, RB1	43-56
	Introduction, Basic theory of p-n junction photovoltaic converters, Characteristics of solar radiation, Typical schematic representation of a solar cell and the idealized equivalent circuit, Basic characteristics, power and efficiency, Materials for photovoltaic conversion and cell fabrication, Silicon, Cadmium Sulphide and Gallium Arsenide cells, Application, System design methodology.	https://www.livesc ience.com/41995- how-do-solar- panels-work.html	https://www.science direct.com/journal/s olar-cells	
	Assi	gnment-3		
26-35	MHD Generator		TB1, RB1	110-143
	Introduction, Gaseous conductors, Seeding, MHD equations, Operating range of an MHD duct, Different types of MHD generators, Thermodynamic analysis of linear constant velocity MHD generator	https://www.youtu be.com/watch?v=5 Xb7uPAaCuc	https://en.wikipedia. org/wiki/Magnetohy drodynamic_generat or	
	velocity MHD generator, Electrical power output and efficiency, Adiabatic efficiency, Introduction			

	to liquid MHD generator.						
	Tutorial-2, Assignment-4						
36-39	Fusion Power		TB1, RB1	60-72			
	Principles of fusion power production, Advantages of fusion power, Problems in achieving controlled thermonuclear reactions, Plasma confinement, heating and diagnostics, Fusion devices.	https://www.youtu be.com/watch?v=L JZvFlo0iNs	https://en.wikipedia. org/wiki/Fusion_po wer				
	Tutorial-3	3, Assignment-5	I				
40-42	Wind Power		TB2	23-38			
	Introduction to Wind Power Generation.	https://www.youtu be.com/watch?v= GExTwRNkQBg	http://nptel.ac.in/cou rses/108105058/24				

1. Evaluation Scheme:

Component 1	Mid Semester Exam	20
Component 2	Assignment Evaluation	10
Component 3**	End Term Examination**	70
	Total	100

** The End Term Comprehensive examination will be held at the end of semester. The mandatory requirement of 75% attendance in all theory classes is to be met for being eligible to appear in this component.

SYLLABUS

Topics	No of lectures	Weightage
Energy sources, Energy conversion chart, Direct Energy	4	10%
Conversion (DEC) devices, General representation of DEC		
devices		
Introduction, Thermoelectric effects, Thermodynamic analysis	7	16%
of Thermoelectric generator, Maximum thermal efficiency and		

maximum power output, Single stage and multistage generators, Thermoelectric materials, Applications.		
Introduction, Principle of fuel-cell operation and different types of fuel-cells reactions, electrochemical thermo-dynamics, Relation of cell potential to thermodynamic variables, Cell efficiency, Polarization losses, Types of fuel cells, Performance characteristics, Applications.	7	16%
Introduction, Basic theory of p-n junction photovoltaic converters, Characteristics of solar radiation, Typical schematic representation of a solar cell and the idealized equivalent circuit, Basic characteristics, power and efficiency, Materials for photovoltaic conversion and cell fabrication, Silicon, Cadmium Sulphide and Gallium Arsenide cells, Application, System design methodology.	7	16%
Introduction, Gaseous conductors, Seeding, MHD equations, Operating range of an MHD duct, Different types of MHD generators, Thermodynamic analysis of linear constant velocity MHD generator, Electrical power output and efficiency, Adiabatic efficiency, Introduction to liquid MHD generator.	10	25%
Principles of fusion power production, Advantages of fusion power, Problems in achieving controlled thermonuclear reactions, Plasma confinement, heating and diagnostics, Fusion devices.	4	10%
Introduction to Wind Power Generation.	3	7%

This Document is approved by:

Designation	Name	Signature
Course Coordinator	Mr.Deepak Singh	
H.O.D	Mr. Prabhat Kumar	
Principal	Dr. Achintya	

Evaluation and Examination Blue Prints:

Internal assessment is done through quiz tests, presentations, assignments and project work. Two sets of question papers are asked from each faculty and out of these two, without the knowledge of faculty, one question paper is chosen for the concerned examination. The components of evaluations alongwith their weightage followed by the University is given below

Sessional Test	20%
Internals	10%
End term examination	70%

LECTURE PLAN

Institute / School Name :	DARBHANGA COLLEGE OF ENGINEEERING								
Program Name	B.Tech (EEE, 8 th semester)								
Course Code	031828								
Course Name	Direct Energy Conversion	1							
Lecture / Tutorial (per week):	3/1	Course Cre	dits 4						
Course Coordinator Name	Mr. Deepak Singh								
Topics		I	ecture Number						
System and Signal									
MODULE 1 Introduction (4 I	LECTURES)								
Energy sources, Energy conve	ersion chart,		1-2						
Direct Energy Conversion (D representation of DEC device		3-4							
MODULE 2 Thermoeleo LECTURES)	n (7	5-11							
Introduction, Thermoelectric of Thermoelectric generator,	nalysis	5-7							
Maximum thermal efficiency Single stage and multistage g materials, Applications.	put,	8-11							
MODULE 3: Fuel Cells (7 L		12-18							
Introduction, Principle of fue types of fuel-cells reactions, of dynamics,	nt	12-15							
Relation of cell potential to efficiency, Polarization lo Performance characteristics, A	cells,	15-18							
MODULE 4: Solar Cells (7 I		18-25							
Introduction, Basic theory of		18-21							

converters, Characteristics of solar radiation, Typical schematic representation of a solar cell and the idealized equivalent circuit,	
efficiency, Materials for photovoltaic conversion and cell	21-25
fabrication, Silicon, Cadmium Sulphide and Gallium	
Arsenide cells, Application, System design methodology.	
MODULE 5: MHD Generator (10 LECTURES)	26-35
Introduction, Gaseous conductors, Seeding, MHD equations,	26-30
Operating range of an MHD duct, Different types of MHD	
generators,	
Thermodynamic analysis of linear constant velocity MHD	30-35
generator, Electrical power output and efficiency, Adiabatic	
efficiency, Introduction to liquid MHD generator.	
MODULE 6: Fusion Power (5 LECTURES)	36-40
Principles of fusion power production, Advantages of fusion	36-38
power	
Problems in achieving controlled thermonuclear reactions,	38-40
Plasma confinement, heating and diagnostics, Fusion devices.	
MODULE 7: Wind Power (5 LECTURES)	41-45
Wind Power : Introduction to Wind Power Generation.	41-45

DARBHANGA COLLEGE OF ENGINEERING, DARBHANGA

8th Sem. Branch:- Electrical & Electronics Engineering Batch (2016-20)

Subject :- Direct Energy Conversion

SI. No.	Name	Class Roll No.
1.	Rajbala Kumari	16-EE-01
2.	Sushmita Kumari	16-EE-03
3.	Shweta Rani	16-EE-04
4.	Nisha Raj	16-EE-05
5.	Priyanka Kumari	16-EE-07
6.	Rashmi Bharti	16-EE-08
7.	Sonika Kumari	16-EE-09
8.	Puja Prabhakar	16-EE-11
9.	Devashish Dubey	16-EE-12
10.	Alok Ranjan	16-EE-13
11.	Hemant Kumar patel	16-EE-14
12.	Kumar Satyam	16-EE-15
13.	Pratik Kumar	16-EE-17
14.	Prabhash Kumar Yadav	16-EE-18
15.	Ranjesh Kumar	16-EE-19
16.	Upendra Kumar	16-EE-20
17.	Amit Kumar	16-EE-21
18.	Wajahat Khalil	16-EE-22
19.	Prakash Ranjan	16-EE-24
20.	Rahul Kumar	16-EE-26
21.	Ankit Ranjan	16-EE-27
22.	Varinder Kumar	16-EE-29
23.	Vikash Kumar Bharti	16-EE-30
24.	Navneet Kumar	16-EE-31
25.	Prem Raj	16-EE-32

26.	Juhi Kumari	16-EE-33
27.	Appu Kumar	16-EE-34
28.	Ashish Kumar	16-EE-35
29.	Babloo Kumar	16-EE-36
30.	Niraj Kumar Nirala	16-EE-37
31.	Poonam Priya	16-EE-38
32.	Kamal Nayan Jha	16-EE-40
33.	Rajneesh Kumar	16-EE-41
34.	Rohit Kumar	16-EE-42
35.	Amrita Kumari	16-EE-43
36.	Dimple Kumari	16-EE-44
37.	Khushbu Kumari	16-EE-45
38.	Alok Kumar	16-EE-46
39	Md. Ataur Rahman	16-EE-47
40	Shubhra Verma	16-EE-48
41	Khushboo Kumari	16-EE-49
42	Priti Kumari	16-EE-50
43	Md. Sharmajul Haque	16-EE-51
44	Saurav Kumar	16-EE-52
45	Anubhav Anand	16-EE-53
46	Shankar Suwan Kesri	16-EE-54
47	Tanuj Anand	16-EE-55
48	Ganesh Kumar	16-EE-56
49	Ashish Ranjan	16-EE-57
50	Shashi Kumar	16-EE-58
51	Vishnu Kumar	16-EE-59
52	Anku Rani	16-EE-60
53	Santosh Kumar Mahto	16-EE-61
54	Shubham Kumar	16-EE-62
55	Md. Seraj	16-EE-63
56	Amrendra Kishor	16-EE-64

57	Amit Kumar Jha	16-EE-65
58	Rohit Kumar Yadav	16-EE-66
59	Rahul Kumar Sahni	16-EE-67
60	Saurabh Kumar	16-EE-68
61	Pankaj Kumar	16-EE-69
62	Pooja Roy	16(LE)EE-01
63	Surya Rai	17(LE)EE-01
64	Santosh Kumar	17(LE)EE-02
65	Lalit Kumar Ram	17(LE)EE-03
66	Deepak Kumar Prabhat	17(LE)EE-04
67	Sumit Kumar	17(LE)EE-05
68	Avinash Choudhary	17(LE)EE-06
69	Ranjeet Kumar Sah	17(LE)EE-07
70	Baby Kumari	17(LE)EE-08
71	Virendra Kumar Sah	17(LE)EE-09
72	Abhinav Raj	17(LE)EE-10
73	Ejaz Ahmad Ansari	17(LE)EE-11

DARBHANGA COLLEGE OF ENGINEERIG, DARBHANGA

MID SEMESTER EXAMINATION 2018-19

ELECTRICAL ENGINEERING (8th SEM)

DIRECT ENERGY CONVERSION

(031828)

Time: 2 hours 20

Maximum Marks:

Attempt all questions.

- 1. Draw and explain the equivalent circuit of a solar photovoltaic cell? What are the advantages and disadvantages of the solar cell compare with conventional system?
- 2. Explain and draw the V-I and PV characteristics of solar cell and maximum power point tracking in solar PV?
- 3. Explain fill factor and efficiency? Calculate fill factor, maximum power and efficiency with following parameter

$$V_{oc} = 0.24 V, I_{sc} = -10A$$

 $V_{\rm m} = 0.14 V, I_{\rm m} = -6.5 A$

Intensity = 100 W/m^2 , Area = 4 cm^2 .

- 4. Briefly explain elementary open cycle MHD and closed cycle MHD system along with diagram?
- 5. Calculate the open circuit voltage and maximum power output of MHD system with the following specification? Plate area = $0.4m^2$, distance between plates = 0.8m, flux density = $2Wb/m^2$,

plate area = 0.4m^2 , distance between plates = 0.8m, flux density = 2wb/m^2 , average gas velocity = 100m/s, conductivity of gas = 10 ohm/m.

DARBHANGA COLLEGE OF ENGINEERING

Department of Electrical and Electronics Engineering Direct Energy Conversion

Assignment I

- 1. Write the mathematical form of I-V characteristics of solar cell?
- 2. What is the range of efficiency of solar cell?
- 3. What is the condition for generation of electron hole pair in the term of energy band?
- 4. What is the maximum power tracking in solar PV cell?
- 5. Give the classification of fuel cell?

Department of Electrical and Electronics Engineering

Direct Energy Conversion

Assignment II

- 1. What are the advantages and disadvantages of fusion power?
- 2. Explain the principle of fusion power generation?
- 3. Discuss different types of MHD generating system?

4. Explain briefly:

- a) Solar power plant
- b) Wind energy plant
- c) Tidal power plant
- d) Geothermal power plant

Department of Electrical and Electronics Engineering

Direct Energy Conversion

Assignment III

- 1. Describe the energy conversion chart with various source of energy?
- 2. What are the various types of fuel cell and state the principle of operation?
- 3. Show the basic construction and working of pn junction of photovoltaic converter?
- 4. Write the short notes on
 - a) Material for MHD generator
 - b) Seeding

Department of Electrical and Electronics Engineering

Direct Energy Conversion

Assignment IV

- 1. How is a solar cell fabricated? What are the factors which limit the solar cell efficiency?
- 2. Explain the thermodynamics of fuel cell reaction and give the applications.

www.akupihar.com

cubihar.com

www.akubihar.com

www.akubihar.com

Code : 031828

B.Tech. 8th Semester Exam., 2017

Direct Energy Conversion

Time : 3 hours

Full Marks: 70

Instructions :

- (i) The marks are indicated in the right-hand margin.
- (ii) There are Nine questions in this paper.
- (iii) Attempt Five questions in all.
- (iv) Questions No. 1 is compulsory.

1.

- (a) Write the mathematical form of I-V characteristic of solar cell.
- (b) Write the classification of solar cell on the basis of thickness of active material.
- (c) What is the condition for generation of electron hole pair in terms of band gap and energy in photon.
- (d) What is the range of efficiency of solar cell (single crystal)?
- (e) Write the classification of fuel cell based on chemical nature.

14

www.akubihar.com

				www.al	ku#biha	r.com	 I				
		(f)	Power generation through μ HD generation base on faraday effect.	d	ww.a	6.		Explain thermo- Show maximum	_		
	.'		state true or fals	e	kut .		(-)		$4\alpha^2 4T^2$	1	
		(g)	Induction generator can be used for converting wir	nd	oiha			generation Pmax			· · ·
			power of electric power.		IF.C	7	(a)	Explain the princ		n nower get	peration 7
			state true or fals	e	com	/.		What are the a	-	_	
		(h)	In full cell chemical energy in directly converted	to	· .		-		uvantages a	ilu uisauva	ntages of
			electric enuars.			o		fusion power?	o naincialo o	f uLID cone	ration 7
			write true or false	e		٥.		Discuss the basi			
ş		(i)	Thermo-electric generation produce direct current.	nt.	Ę		(0)	Derive the expre		num power	
N N			write true or false		N.	·	11 7	µHD generation	1.		7×2
www.akubihar.com	2.	(a)	Write the advantages and disadvantages of solar ce	-11	www.akubihar.com	9.		ite short notes :		~ ***	. 1~2
Jbit			compared to conventional System.	7	1 bit			Wind energy cor		em	
har.		(b)	Draw and explain equivalent circuit of a solar cel	I I.	lar.		(6)	Solid oxide fuel	cell -		
con		. ,		7	con				***		· .
3	3.	(a)	What is maximum power point traking in solar P	v	2						
		()	system? What are the different strategies f		·						
			•	14							
	4.	(a)	Give the classification of fuel cell.	7	<	,				-	
			Draw and explain the VI characteristic of fuel cell.	7	Š.						
	5	. ,	Discuss different types of µHD generating system	n.	.a⊧		-				
	5.		What are the advantages and disadvantages of μ H		cub				-		
		(0)	generation? 7+		vww.akubihar.co						
	Co	de	: 031828 2		.co		_				
		_		www.al	ku≣biha	r.com	de :	: 031828	3		

www.akubihar.com

Code : 031828

B.Tech 8th Semester Exam., 2019

DIRECT ENERGY CONVERSION

Time : 3 hours

Full Marks : 70

Instructions :

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer of the following (any seven): 2×7=14
 - (a) Which of the following is a conventional source of energy?
 - (i) Sun
 - (ii) Wind
 - (iii) Fossil fuel
 - (iv) Fuel cell
 - (b) To increase current, PV module can be connected in
 - (i) series
 - (ii) parallel
 - (iii) Both of the above
 - (iv) None of the above

AK9**/882**

(Turn Over)

http://www.akubihar.com

http://www.akubihar.com

Sec. 1.

(2)

- (c) The efficiency of a solar cell
 - (i) increases with increase in temperature
 - (ii) decreases with increase in temperature
 - (iii) unaffected with increase in temperature
 - (iv) first increases and then decreases with increase in temperature
- (d) A fuel cell in order to produce electricity burns
 - (i) helium
 - (iii) nitrogen
 - (iii) hydrogen
 - (iv) None of the above
- (e) Local winds are caused by
 - (i) differential heating of land and water
 - (ii) differential heating of plains and mountain
 - (iii) Any of the above
 - (iv) None of the above

AK9/882

(Continued)

http://www.akubihar.com

http://www.akubihar.com

http://www.akubihar.com

(3)

- Ð In which of the following power plants the availability of power is least reliable?
 - (i) Solar power plant
 - (ii) Wind energy plant
 - (iii) Tidal power plant
 - (iv) Geothermal power plant
- What is used to turn wind energy into (g)electrical energy?
 - (i) Turbine
 - (ii) Generator
 - Yaw motor
 - (iv) Blade
- Which is a direct band gap material? (h)
 - (i) Copper indium gallium selenide
 - Copper selenide (ü)
 - (iii) Copper gallium telluride
 - (iv) Copper indium gallium diselenide
- Energy efficiency is defined as (i)
 - (i) energy that escapes in an unusable form
 - (ii) energy in bonds formed subtracted from energy in bonds broken

(Turn Over) http://www.akubihar.com http://www.akubihar.com

- (4)
- (iii) the content of energy in a fossil fuel (iv) the amount of energy extracted from a system divided by the total energy provided into the system During inter-conversion of energy from (i) one form to other form, the total energy at any time remains constant http://www.akubihar.com (ii) remains zero (iii) increases (iv) decreases Describe the energy conversion chart (a) with various sources of energy. 6 /Illustrate the thermoelectric effects with neat sketch. http://www.akubihar.com 8 What are the various types of fuel cell? **3.**/ (a), Extend the principle of operation of 7 any one. Demonstrate the working principle of ίЬ)/ 7 MHD open-cycle system. Continued) AK9**/882**

http://www.akubihar.com

http://www.akubihar.com

(5)

- (a) List the various thermoelectric materials.
 - (b) Certain elements A and B have the following properties in the temperature range of interest :

$$\alpha_{p,n} = 0.003 \text{ V/K}$$

$$K_p, K_n = 0.04 \text{ W/K}$$

$$R_p R_n = 0.025 \text{ ohm}$$

The elements operate between junction temperatures of 1250 K and 750 K. Determine—

- (i) the maximum output and the efficiency at maximum output;
- (ii) the input power and terminal voltage at no load;
- (iii) the input power and current under short-circuit condition.
- 5. Show the basic construction and working of a *p*-*n* junction photovoltaic converter. Also select the materials used for construction. 14
- 6. A thermoelectric generator is to be used as a topping unit for a steam power plant. The thermoelectric generator producing 100 kW at 115 V operates between an output

AK9/88

http://www.akubihar.com

(Turn Over) http://www.akubihar.com

4

http://www.akubihar.com

(6)

temperature of 1500 K and exit temperature of 1000 K. A steam turbine and generator unit operating at an input temperature of 1000 K and ambient temperature of 350 K has a thermal efficiency of 30% and a generator efficiency of 92%. The properties of thermoelements are given below :

 $\alpha_{p,n}$ at 1250 K = 0.0012 V/K $k_p = 0.20$ W/cm-K $k_n = 0.030$ W/cm-K $\rho_p = 0.010$ ohm-cm $\rho_n = 0.012$ ohm-cm The current density in the thermoelements is limited to 20 A/cm² and the thermoelectric

limited to 20 A/cm^2 and the thermoelectric generator is aimed to operate at maximum thermal efficiency. Calculate—

- (a) the thermal efficiency of the thermoelectric generator;
- (b) the number of thermal couples in series;
- (c) the sizes of thermal elements;
- (d) the open-circuit voltage;
- (e) the heat input and heat rejected from the thermoelectric generator at both full-load and no-load conditions;
- (f) the overall efficiency of the combined thermoelectric steam power plant 14

(Continued)

http://www.akubihar.com

AK9/882

http://www.akubihar.com

http://www.akubihar.com

10

(7)

7. Elaborate the construction and working principle of wind power generation system. 14

8. (a) An MHD generator has the following parameters :

Plate area $= 0.20 \text{ m}^2$ Distance between plates $= 0.4 \text{ m}^2$ Flux density $= 2 \text{ Wb/m}^2$ Average gas velocity= 1000 m/sConductivity of the gas= 10 mho/m

Calculate the open-circuit voltage and maximum power output.

- (b) Write short notes on :
 - white short notes on .
 - (i) Materials for MHD generator
 - (ii) Seeding
- **9.** (a) Identify the various problems in achieving the controlled thermonuclear reactions.
 - (b) Develop the various solar radiation angles considering a flat surface on ground facing south.

http://www.akubihar.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भजे और 10 रुपये पार्य, Paytm or Google Pay से

http://www.akubihar.com

6

8

6

4+4

Code : 031728

B.Tech 7th Semester Exam., 2019

DIRECT ENERGY CONVERSION

Time : 3 hours

Full Marks : 70

http://www.akubihar.com

http://www.akubihar.com

Instructions :

(i) The marks are indicated in the right-hand margin	1.
(ii) There are NINE questions in this paper.	
(iii) Attempt FIVE questions in all.	
(iv) Question No. 1 is compulsory.	
1. Choose the correct answer (any seven) : $2 \times 7 = 1$	4

(a) A photovoltaic cell converts

- heat energy into mechanical energy
- chemical energy into electrical (ii) energy
- (iii) solar energy into electrical energy
- (iv) electrical energy into chemical energy

(2)

Which of the following is a nonconventional type of power generation without prime movers? (i) Hydropower (ii) Thermal (iii) Nuclear (iv). Thermoelectric Fuel cell performance is not limited by (i) first law of thermodynamics (ii) second law of thermodynamics (iii) third law of thermodynamics (iv) All three laws are applicable For which of the following devices (dí negative charge carriers flow from anode to cathode in the external circuit? (i) MHD generator (ii) Thermionic generator (iii) Thermoelectric generator (iv). Fuel cell The major disadvantage with solar cells (leV for power generation is (i) lack of availability (ii), large area requirement (iii) variable power (iv) high cost

20AK/488

(Turn Over)

20AK/488

(Continued)

http://www.akubihar.com

http://www.akubihar.com

(3)

- (f) Winds, caused by greater solar heating of the earth's surface near the equator than near the northern or southern poles, are known as
 - (i) local winds
 - (ii) equatorial winds
 - (iii) planetary winds
 - (iv) trade winds
- (g) Which direct energy converting systems is not limited by Carnot efficiency?
 - (i) Thermoelectric
 - (ii) Thermionic
 - (iii) MHD
 - (iv) Fuel cells
- (h) A nuclear waste is generated in
 - (i) chemical reactions
 - (ii) nuclear fission
 - (iii) nuclear fusion
 - (iv) None of the above
- (i) The methods of plasma heating are

http://www.akubihar.com

- (i) ohmic heating
- (ii) neutral beam injection
- (iii) compression heating
- (iv) All of the above

20AK/488

http://www.akubihar.com

(Turn Over)

- Thermoelectric effects are
 - (i) Seebeck, Thomson, Rutherford effects
 - (ii) Thomson, Peltier, Curie effects
 - (iii) Seebeck, Peltier, Thomson effects
 - (iv) Peltier, Curie, Seebeck effects

http://www.akubihar.com

(a)

- What are the various energy sources? Discuss the energy conversion chart.
- (b) Differentiate between direct energy conversion processes and other energy conversion processes for power generation. http://www.akubihar.com
- 3. Design a thermoelectric generator to operate from a heat source of 1000 K and to reject heat 600 K. The required output is 50 W at 6 V. The properties of the materials to be used are
 - $\alpha_{p,n} = 0.001 \text{ V/K}, k_p = 0.03 \text{ W/cm-K},$ $k_n = 0.02 \text{ W/cm-K}, \rho_p = 0.005 \text{ ohm-cm},$
 - $\rho_n = 0.006$ ohm-cm

Assume the thermoelectric elements to be 1 cm in length.

20AK/488

(Continued)

14

http://www.akubihar.com

7

7

(Co

(5)

What do you understand by 'figure of merit'? When does its value become the maximum? What is the optimum resistance ratio for (a) maximum power and (b) maximum efficiency? Explain the cascade multistage operation of thermoelectric generators.

- 3) What are the three types of fuel-cell reactions? Give the thermo-oxygen, carbon-oxygen and methane-oxygen fuel-cell reactions.
- (b) Explain the thermodynamics of fuel-cell
 reactions and give the applications of fuel cell.
- 6. (a) How is a solar cell fabricated? What are the factors which limit the solar cell efficiency?
 - (b) A constant velocity MHD generator operates at pressure ratio of 3. The gas used has polytropic index $\gamma = 1.35$. Find the adiabatic efficiency of this device as a function of the loading factor and plot this.

Describe the working principle of magnetohydrodynamic power generation power plant. Also describe either open cycle MHD steam power plant or closed cycle MHD steam power plant.

http://www.akubihar.com

http://www.akubihar.com

14

7

7

7

14

http://www.akubihar.com

(6)

- 8. (a) What is the principle of fusion power? Discuss its various advantages and disadvantages.
 - (b) What are the various problems associated with controlled thermonuclear reactions? How are these problems resolved?
 - (a) What are the various wind turbines? Explain wind turbine power plant with a schematic diagram.
 - (b) Derive the formula of coefficient of performance (C_p) of wind energy conversion system. What is the maximum value of C_p ?

http://www.akubihar.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भजे और 10 रुपये पार्य, Paytm or Google Pay से

20AK-650/488

9.

Code : 031728

7

7

7

7

http://www.akubihar.com

20AK/488

(*Turn Over*) http://www.akubihar.com

)

DARBHANGA COLLEGE OF ENGINEERIG, DARBHANGA

ELECTRICAL ENGINEERING (8th SEM)

DIRECT ENERGY CONVERSION

<u>UNIT I</u>

DIRECT ENERGY CONVERSION:

- 1. Why non-conventional energy sources have become important?
- 2. What is conventional and non-conventional energy?
- 3. Give examples of various bio-fuels?
- 4. What are tidal energy and its application?
- 5. Relate civilization to energy and explain?
- 6. Give various resources of non-conventional energy generation?
- 7. How geothermal energy is harnessed?
- 8. In what way wind energy can be utilized?
- 9. What is solar-pond? Discuss its application?
- 10. How fuel cell can be used for power generation
- 11. Explain how geothermal energy is used to generate electricity?
- 12. Discuss the advantage and limitation of tidal power gestation?
- **13.** What is difference between Renewable and Non-renewable energy resources? Give examples?
- 14. What do you mean by solar collector
- 15. Name the various direct energy conversion systems.
- 16. What are the various sources of geothermal energy?
- **17.** What is tidal energy?
- 18. What are the main sources of bio-mass?
- **19.** List various Non-conventional energy resources. Give their availability, relative merits and demerits.
- 20. What are the main strategies you think for meeting the future energy requirements?
- 21. Distinguish between conventional and non-conventional energy sources?

<u>UNIT II</u>

THERMOELECTRIC POWER GENERATION:

- **1.** What is thermoelectric effect?
- 2. Explain Seedback and Peltier effect?
- 3. Which are the thermoelectric materials? Mention its application?
- **4.** Explain the working principle of thermionic power conversion with the main advantages and disadvantages?
- 5. Explain the principles of thermo-electric generator?
- 6. Describe briefly thermal electric power?
- 7. Explain the cascade multistage operation of thermoelectric generators?
- 8. What is direct band gap energy?
- 9. Illustrate the thermoelectric effect with neat sketch?
- **10.** What are the thermoelectric materials?
- **11.** Explain the thermal efficiency of thermoelectric generator?
- 12. Derive the overall efficiency of the combined thermoelectric steam power plant?
- 13. What are the heat input and heat output rejected from the thermoelectric generator?
- 14. What is open circuit voltage?
- **15.** What is the condition for generation of electron hole pair in term of band gap and energy in photon?
- 16. Discuss performance parameter of a thermoelectric module?
- 17. Discuss the p and n type unit thermocouple for a thermoelectric generator?
- 18. What are the limitations of thermoelectric generator?
- 19. Explain the types of material used in thermoelectric generator?
- **20.** Write short notes on Thomson effect?

<u>UNIT III</u>

FUEL CELL:

- 1. Write a note on ideal and real efficiencies of fuel cell?
- 2. Discuss the relation between activation energy and reaction rate?
- 3. What are the major requirements for a candidate fuel cell electrolyte?
- 4. Discuss the various methods to improve the kinetic performance of a fuel cell?
- 5. List the important qualities required for an effective fuel cell catalyst material?
- **6.** List two major advantages and two major disadvantages of fuel cells compared to other power conversion devices?
- 7. Explain the four major steps in the generation of electricity within a fuel cell?
- **8.** Write a note on stack clamping?
- 9. List the technologies for hydrogen storage?
- 10. Write the cell reaction of alkaline fuel cell?
- 11. Explain advantages and disadvantages of fuel cell?
- **12.** Explain basic reaction in fuel cell and enthalpy formation and enthalpy change of reacting system?
- 13. Explain Efficiency and power due to entropy change and internal ohmic heating?
- 14. Explain Acid and Molten carbonate fuel cell?
- **15.** Explain the difference between ordinary batteries and fuel cell?
- 16. Discuss the application and economic aspect of fuel cell?
- **17.** How fuel cell can be used for power generation?
- 18. What are the different types of fuel cells?
- 19. What are limitations of fuel cell?
- **20.** What is the operation of hydrogen fuel cell?
- **21.** Discuss different type of polarization that occurs in fuel cell?
- 22. Explain the thermodynamics of fuel cell reaction and give their applications?

<u>UNIT IV</u>

SOLAR CELL:

- **1.** Explain photo electricity with the help of neat sketch?
- **2.** Mention major advantages of solar photovoltaic cells over conventional power system?
- 3. Write note on solar cell classification?
- 4. Explain solar cell applications?
- 5. Explain solar cell, module, panel and array constructions?
- **6.** Explain with sketches maximum power point tracker (MPPT) using buckboost converter?
- **7.** A PV system feeds a DC motor to produce 1hp power at the shaft. The motor efficiency is 85%. Each module has 36 multi crystalline silicon solar cells arranged in 9X4 matrix. The cell size is 125X125mm and cell efficiency is 12%. Calculate the number of modules required in the array. Assuming global radiation incident normally to the panel as 1kW/m²?
- 8. Discuss various techniques available to utilize solar energy?
- 9. What are the applications of solar energy?
- **10.** What are various types of solar collector? Explain the design procedure?
- **11.**Discuss the performance analysis of cylindrical and parabolic solar collector?
- **12.** What is solar constant?
- **13.** What do you understand by figure of merit?
- 14. How is solar cell fabricated?
- 15. Show the basic principal of p-n junction photovoltaic converter?
- **16.** Develop various solar radiation angles considering the flat surface on ground facing south?
- 17. What are the factors which limit the solar efficiency?
- 18. What is the range of efficiency of solar cell?
- 19. Write the mathematical form of I-V characteristics of solar cell?
- **20.** Write short notes on:
 - (a) Magnetic Hydrodynamic (MHD) Generator.
 - (b) Tidal energy.
 - (c) Solar energy storage systems.

<u>UNIT V</u>

MHD GENERATOR:

- **1.** Explain the basic principles of a magneto hydrodynamic power (MHD) conversion system?
- **2.** Draw suitable sketch and explain open cycle MHD power generating system?
- **3.** Explain with suitable sketch and explain closed cycle MHD power generating system?
- 4. Discuss the environmental aspect of MHD?
- 5. What are the main types of MHD (Magnetic Hydrodynamic) systems?
- 6. Write short note on seeding?
- 7. Explain the material for MHD generator?
- 8. What is the open circuit voltage for MHD generator?
- 9. Discuss maximum power of MHD generator?
- 10. Explain the types of power generation through MHD generation?
- 11. What are the advantage and disadvantages of MHD generation?
- **12.** Derive the working of the MHD?
- **13.** What is the MHD cycle?
- **14.** What is the speed recovery system?
- 15. Demonstrate the working principle of MHD closed cycle system?
- 16. Define the pre-heater and combustor?
- 17. Explain the hybrid MHD generator?
- **18.** Define compressor?
- 19. Derive the maximum power of MHD generator?
- 20. Demonstrate the working principle of MHD open cycle system?

<u>UNIT VI</u>

FUSION POWER AND WIND POWER:

- **1.** Explain energy release during nuclear fusion reaction?
- 2. What is the principle of fusion power?
- 3. Discuss the various advantages and disadvantages of fusion power?
- **4.** What are problem associated with controlled thermo-nuclear reaction? How these problem resolve?
- 5. List the various components of Wind turbines?
- **6.** What is wind energy? Discuss the factor affecting the site selection for wind mills?
- 7. Explain various basic components of wind energy conversion system?
- 8. What is the wind mill? Mention dynamic forces acting on wind mill blades?
- 9. What is total power density in wind stream?
- 10. Explain the torque and axial thrust on horizontal shaft blade turbine?
- **11.** Derive the formula of coefficient of performance C_p of wind energy conversion?
- 12. What are the various wind turbines?
- 13. Explain the wind turbine power plant with a systematic diagram?
- 14. What are the different causes of local Winds?
- **15.** What are the factors determine the output from a wind energy converter
- 16. Give the expression for available wind power?
- **17.** Draw the curve that shows the combined effects of wind Speed and Rotor diameter on wind power generation?
- 18. Define Power Co-efficient?
- **19.** Write the general Energy Equation for Steady State Flow?
- **20.** What are the different types of forces acting on propeller type wind turbine?
- **21.** What are the mechanisms for producing forces from wind?