Institute / College Name :	Darbhanga College of Engineering			
Program Name	B.Tech EEE			
Course Code	100305			
Course Name	DIGITAL ELECTRONICS			
Lecture / Tutorial (per week):	3/1	Course Credits	5	
Course Coordinator Name	Ms. Sweta Kumari			

1. <u>Scope and Objectives of the Course</u>

The course introduces Boolean algebra, Reduction techniques and demonstrates the design of logic gates. Knowledge of digital systems design based on combinational and sequential logic is also imparted. This course further teaches about PLD, Memories and Logic Families.

- 1. Understanding the different number systems used in computerized system and codes used to represent the digits and fundamental of arithmetic operation using each number system and codes.
- 2. Understanding the minimization of logic expression and designing combinational and sequential digital circuits.
- 3. Analyzing the operation and design constraints of CMOS and TTL circuit for logic fabrication.
- 4. Verifying and analyzing the practical digital circuits.
- 5. Enabling students to take up application specific sequential circuit to specify the finite state machine and designing the logic circuit.
- 6. Verify and analyze the input/output data of each logic gate and circuits such as adders, counters, coders, etc,
- 7. Analyze the basic operation of memory cell and its limitations in circuit designing.
- 8. Apply the digital circuit design concept in developing basic component of computer organization, projects or experiments.

2. <u>Textbooks</u>

TB1: Mano, Morris. "Digital logic." Computer Design. Englewood Cliffs Prentice-Hall (1979).

- TB2: Kumar, A. Anand. Fundamentals Of Digital Circuits 2Nd Ed. PHI Learning Pvt. Ltd., 2009.
- TB3: Digital systems Principles and Applications by Tocci, Widmar and Jain, Pearson
- TB4: Digital fundamentals by Floyd And Jain, Pearson

3. <u>Reference Books</u>

- RB1: Fundamentals of VHDL design by Stephen Brown and Zovenkeo Vraseseic, TMH
- **RB2**: Introduction To Logic Design With Cd Rom by Alan B Marcovity, TMH,
- **RB3**. Fundamentals Of Digital Logic With Verilog Design by Stephen Brown, TMH
- **RB4**. Modern digital electronics by R.P Jain, TMH

Other readings and relevant websites

	S.No.	Link of Journals, Magazines, websites and Research Papers
	1.	http://nptel.ac.in/courses/117106086/1
Ī	2.	http://nptel.ac.in/courses/117106114/
Ī	3.	http://www.engpaper.com/electronics.htm
	4.	http://www.newelectronics.co.uk/digital-magazine/
Ī	5.	http://journalspub.com/journalspub/AllEditorsJournalwise.aspx?jid=25&jname=International+Journal+of+Digital+Electronics

6. <u>Course Plan</u>

Lecture Number	Date of Lecture	Topics	Web Links for video lectures	Text Book / Reference Book / Other reading material	Page numbers of Text Book(s)
1-4		Digital Principle		TB3, RB4	
		Analog vs Digital, Number system, Computer Codes, Digital Signals, Waveforms Positive and Negative logic, Logic Gate: basic, universal and others, Truth Table, Logic functions, IC Chips, Timing Diagram, and Electrical analogy.	om/watch?v=CeD2L6		
	•	Tu	itorial - 1	•	•

5-9	Boolean laws and theorems		TB1,TB2	
	Logic functions, conversion of	https://www.youtube.c	-,	
	logic functions into truth table	om/watch?v=WfA4zl		
	and vice versa. SOP and POS	ARZ7k		
	forms of representation, min			
	terms and max terms,			
	simplification of logic			
	functions by theorems and			
	Karnaugh's map, don't care			
	conditions, design of special			
	purpose computers and related			
	practical problems.	- 2, Assignment I		
9-15	Analysis and synthesis of		TB1, TB2, RB4	
<i>y</i> -1 <i>y</i>	combinational logic circuits		1D1, 1D2, KD4	
	Adder and substructures (look	https://www.youtube.c		
	ahead adders), Multiplexers, de	om/watch?v=uv_RJ1P		
	multiplexers, Encoders,	v71s		
	decoders, code convertors,			
	magnitude comparators, parity			
	generators and			
		itorial - 3		
	Mid-Semester Exam (Sylla	abus covered from 1-15		
16-19	Integrated circuit logic families		TB3, RB1	
	RTL, DTL, TTL, CMOS,	https://www.youtube.c		
	IIL/I2L (integrated injection	om/watch?v=iqENkJn		
	logic & emitter coupled logic).	<u>Jiwc</u>		
	 Tutorial –	- 4, Assignment 2		
20-29	Sequential circuit blocks and		TB2, TB3, RB3	
	latches			
	flip flops- race around	https://www.youtube.c		
	condition, master slave and	om/watch?v=ibQBb5y		
	edge triggered, SR, JK, D & T	EDIQ		
	Flip Flop, shift registers,			
	counters- synchronous and			
	asynchronous: design of ripple			
	counter.	ıtorial - 5	1	
30-31	Timing circuit	1011ai - J	TB1, RB2	
50 51	multi vibrators, mono stable	https://www.youtube.c	101, 102	
	and astable timer: LM555	om/watch?v=tpVUl_y		
		0EvQ		
		utorial 6		
32-33	Use of building blocks		TB1, RB4	
	designing larger systems such	https://www.youtube.c		
	as digital to analog	om/watch?v=Y2OPnr		
	converters(DAC) weighted	<u>gb0pY</u>		
	resistors and r-2r, analog to			
	digital(ADC)- comparator, counter and succession.			
		ıtorial - 7	I	
34-35	Memories	avvi 141 - 7	TB1, TB2, RB4	
	static and dynamic RAMs,	https://www.youtube.c		
	ROM, EPROM, and	om/watch?v=GnOTcz		
	EEPROM.	dBWh8		
		0 1		
	<u> </u>	- 8, Assignment 3		

1. Evaluation Scheme:

Component 2	Assignment Evaluation	10
Component 3**	End Term Examination** Total	70 100

****** The End Term Comprehensive examination will be held at the end of semester. The mandatory requirement of 75% attendance in all theory classes is to be met for being eligible to appear in this component.

SYLLABUS

Topics	No of lectures	Weightage
Digital Principle: Analog vs Digital, Number system, Computer Codes,	4	11%
Digital Signals, Waveforms Positive and Negative logic, Logic Gate: basic,		
universal and others, Truth Table, Logic functions, IC Chips, Timing		
Diagram, and Electrical analogy.		
Boolean laws and theorems: Logic functions, conversion of logic functions into truth table and vice versa. SOP and POS forms of representation, min terms and max terms, simplification of logic functions by theorems and Karnaugh's map, don't care conditions, design of special purpose computers and related practical problems.	5	14%
Analysis and synthesis of combinational logic circuits : Adder and substructures (look ahead adders), Multiplexers, de multiplexers, Encoders, decoders, code convertors, magnitude comparators, parity generators and Checkers.	6	16%
Integrated circuit logic families: RTL, DTL, TTL, CMOS, IIL/I2L (integrated injection logic & emitter coupled logic).	4	12%
Sequential circuit blocks and latches, flip flops- race around condition, master slave and edge triggered, SR, JK, D & T Flip Flop, shift registers, counters- synchronous and asynchronous: design of ripple counter.	10	29%
Timing circuit: multi vibrators, mono stable and astable timer: LM555.	2	6%
Use of building blocks in designing larger systems such as digital to analog converters(DAC) weighted resistors and r-2r , analog to digital(ADC)-comparator, counter and succession.	2	6%
Memories: static and dynamic RAMs, ROM, EPROM, and EEPROM.	2	6%

This Document is approved by:

Designation	Name	Signature
Course Coordinator	Ms. Sweta Kumari	
H.O.D	Mr. Prabhat Kumar	
Principal	Dr. Achintya	
Date	24-02-2021	

Evaluation and Examination Blue Print:

Internal assessment is done through quiz tests, presentations, assignments and project work.

The components of evaluations along with their weightage followed by the University is given below

Sessional Test	20%
Assignments/Quiz Tests/Seminars	10%
End term examination	70%

Vision of EEE: - To bring forth engineers with an emphasis on higher studies and a fervour to serve national and multinational organisations and, the society.

Mission of EEE: -

M1: - To provide domain knowledge with advanced pedagogical tools and applications.

M2: - To acquaint graduates to the latest technology and research through collaboration with industry and research institutes.

M3: - To instil skills related to professional growth and development.

M4: - To inculcate ethical valued in graduates through various social-cultural activities.

PEO of EEE

PEO 01 – The graduate will be able to apply the Electrical and Electrical Engineering concepts to excel in higher education and research and development.

PEO 02 – The graduate will be able to demonstrate the knowledge and skills to solve real life engineering problems and design electrical systems that are technically sound, economical and socially acceptable.

PEO 03 – The graduates will be able to showcase professional skills encapsulating team spirit, societal and ethical values.

PSO of EEE

PSO 01 Students will be able to identify, formulate and solve problems using various software and other tools in the areas of Automation, Control Systems, Power Engineering and PCB designing.

PSO 02 Students will be able to provide sustainable solutions to growing energy demands.

Scope and Objectives of the Course

The course introduces Boolean algebra, Reduction techniques and demonstrates the design of logic gates. Knowledge of digital systems design based on combinational and sequential logic is also imparted. This course further teaches about PLD, Memories and Logic Families.

After the completion of this course the students will be able to:

CO 1: Enumerate basic logic gates, its symbols, Truth tables, Boolean equations, & working principle of the logic circuits.

CO 2: Application of logic gates to construct integrated circuits like TTL, CMOS; using one of several different designs, usually with compatible <u>logic levels</u> and power supply characteristics.

CO 3: Design both combinational and sequential networks such as multiplexers, adders, counters, coders, etc,

CO 4: Choose how to interface digital circuits with analog components (ADC, DAC, etc.).

DARBHANGA COLLEGE OF ENGINEERING,

DARBHANGA

w.e.f. – 29-01-18

EEE

Day	1 (10am- 10.50a m)	2 (10.50am- 11.40am)	3(11.40a m- 12.30pm)	4(12.30pm -1.20pm)	Lunch (1.20p m – 1.50p m)	5(1.50pm - 2.40pm)	6(2.40p m- 3.30pm)	7(3.30p m- 4.20pm)
Monday							Digital Electronics	
Tuesday								
Wednesd ay								
Thursday				Digital Electroni cs				
Friday		Digital Electroni cs						
Saturday						Digital Electroni cs		

Mapping of CO's with PO's

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	1	-	-	1	-	-	2	-	-	-	-	2	-
CO 2	1	2	-	-	1	-	-	-	-	-	-	1	2	2
CO 3	3	3	2	-	2	-	-	-	-	-	-	2	3	2
CO 4	2	1	1	-	-	2	1	-	1	1	-	1	1	1

DARBHANGA COLLEGE OF ENGINEERING

Department of Electrical and Electronics Engineering

Digital Electronics (041402)

Assignment II

- 1. What is Combinational Circuits.
- 2. Use a multiplexer to implement the logic function $F = A \oplus B \oplus C$.
- 3. Design the following combinational circuits :
 - i. Full adder
 - ii. Full subtractor

DARBHANGA COLLEGE OF ENGINEERING

Department of Electrical and Electronics Engineering

Digital Electronics (041402)

Assignment I

- 4. Multiple choice questions :
 - i. The given hex number (1E.53)16 is equivalent to
 - a) (35.68)8
 - b) (35.24)8
 - c) (34.34)8
 - d) (35.59)8
 - ii. The octal number (651.124)8 is equivalent to
 - a) (1A9.260)16
 - b) (1B0.160)16

- c) (1A8.023)16
- d) (1B0.289)16
- iii. Convert hexadecimal to decimal: (1E2H) = ?
 - a) 480
 - b) 483
 - c) 482
 - d) 484
- iv. (170)10 is equivalent to
 - a) (FD)16
 - b) (DF)16
 - c) (AA)16
 - d) (AF)16
- v. Convert in to decimal: (214)8 = ?
 - a) (140)10
 - b) (141)10
 - c) (142)10
 - d) (130)10
- vi. Convert (0.345)10 in to an octal number.
 - a) (0.1605)8
 - b) (0.2605)8
 - c) (0.1945)8
 - d) (0.2404)8
- vii. Convert from binary to decimal: (01011.1011)2 = ?
 - a) (11.6875)10
 - b) (11.5874)10
 - c) (10.9876)10
 - d) (10.7893)10
- viii. Octal to binary conversion: (24)8 = ?
 - a) (111101)2
 - b) (010100)2
 - c) (111100)2
 - d) (101010)2
- ix. Convert binary to octal: (110110001010)2 = ?
 - a) (5512)8
 - b) (6612)8
 - c) (4532)8
 - d) (6745)8
- i) Reduce the expression Σ m(0,2,3,4,5,6) using mapping and implement it in AOI logic as well as in NAND logic.

 ii) Reduce the expression Π M(0,1,2,3,4,7) using mapping and implement it in AOI logic as well as in NAND logic.

DARBHANGA COLLEGE OF ENGINEERING

Department of Electrical and Electronics Engineering

Digital Electronics (041402)

Assignment III

- 1. Design and implement a mod-10 asynchronous counter using T FFs.
- 2. What is the difference between the counting sequence of an up-counter and a down counter?
- 3. Describe how an asynchronous down-counter circuit differs from an up-counter circuit.
- 4. What is ROM? Explain types of ROM.

Darbhanga College of Engineering <u>EEE Department</u> Mid. Sem Exam

Digital Electronics

Max. Marks: 20

Note: Attempt all four questions.

1. Determine the base/ code as desired below:

[5]

Time: 2 Hours

i) $(444.456)_{10} = ()_8$ iii) $[10101101]_2 = []_G$ ii) $(2D5)_{H}=()_{2}$ iv) $[1010111]_{G}=[]_{2}$

OR

Determine the Canonical *SOP* and Canonical *POS* function Y = A + BC and also determine product of maxterm of F = XY + XZ

[5]

- With the help of neat diagram explain the working of a two-input TTL NAND gate.
 [5]
- Simplify and apply the following using minimum Logic Gates
 [5]

$$Y = \overline{A\overline{B} + ABC} + A \ (B + A\overline{B})$$

OR

Design and implement the BCD to Excess-3code converter circuit using minimum number of Logic Gates. [5]

- 4. (a) What is the function of ADCs and DACs?[2]
 - (b) Briefly explain the R-2R ladder DAC. [3]

.....

Syllabus Digital Electronics Course Code- 041402

L-T-P: 3-1-2

Credit : 5

1. Digital Principle : Analog vs Digital, Number system, Computer Codes, Digital Signals, Waveforms Positive and Negative logic, Logic Gate : basic, universal and others, Truth Table, Logic functions, IC Chips, Timing Diagram, Electrical analogy.

2. Boolean laws and theorems : Logic functions, conversion of logic functions into truth table and vice versa. SOP and POS forms of representation, min terms and max terms, simplification of logic functions by theorems and Karnaugh's map, don't care conditions, design of special purpose computers and related practical problems.

3. Analysis and synthesis of combinational logic circuits : Adder and substructures (look ahead adders), Multiplexers, de multiplexers, Encoders, decoders, code convertors, magnitude comparators, parity generators and checkers.

4. Integrated circuit logic families : RTL, DTL, TTL, CMOS, IIL/I2L (integrated injection logic & emitter coupled logic).

5. Sequential circuit blocks and latches, flip flops- race around condition, master slave and edge triggered, SR, JK, D & T Flip Flop, shift registers, counters- synchronous and asynchronous: design of ripple counter.

6. Timing circuit : multi vibrators, mono stable and astable timer: LM555.

7. Use of building blocks in designing larger systems such as digital to analog converters(DAC) weighted resistors and r-2r, analog to digital(ADC)- comparator, counter and succession.

8. Memories : static and dynamic RAMs, ROM, EPROM, EEPROM.

GATE Syllabus :

Combinational and Sequential logic circuits, Multiplexer, Demultiplexer, Schmitt trigger, Sample and hold circuits, A/D and D/A converters.

YEAR -2014

akubihar.com

(c) The output of a gate is low if and only if its input are HIGH. It is true for Code : 041402 (i) AND akubihar.com (ii) XNOR B.Tech. 4th Semester Exam., 2014 (iii) NOR DIGITAL ELECTRONICS (w) NAND Time : 3 hours An example of a standard SOP Full Marks : 70 (d) expression is Instructions: (i) AB + ABC + ABD (i) The marks are indicated in the right-hand margin. (ii) ABC+ACD (ii) There are NINE questions in this paper. (iii) $A\overline{B} + \overline{A}B + AB$ (iii) Attempt FIVE questions in all. $(iv) AB\overline{C}D + \overline{A}B + \overline{A}$ (iv) Question No. 1 is compulsory. (e) To implement the expression of ABCD + ABCD + ABCD, it takes one OR 1. Choose the correct option from the following gate and (any seven) :-2×7=14 (i) one AND gate (a) A quantity having continuous wave is (ii) three AND gates (i) a digital quantity (iii) three AND gates and four inverters (ii) an analog quantity (iv) three AND gates and three inverters (iii) a binary quantity (iv) a natural quantity . The invalid state of an S-R latch occurs (f) when by The sum of 11010+01111 equals (b) <u>}.</u>; (i) S = 1, R = 0(i) 101001 (ii) S=0, R=1 , C. (前) 101010 Au) S=1, R=1 (iii) 110101 akubihar.com (iv) 101000 (iv) S=0, R=0 ١

(3)

akubihar.com

(g) The device used to convert a binary number to a 7-segment display format is

1.1

÷

- (i) multiplexer
- (ii) encoder
- (iii) decoder
- (w) register
- (h) An asynchronous counter differs from a synchronous counter in
 - (i) the number of states in its sequence
 - (ii) the method of clocking
 - (iii) the type of flip-flop used
 - (iv) the value of the modulus
- (7) A stage in a shift register consists of
 - (i) a latch
 - (ii) a flip-flop
 - (iii) a byte of storage
 - (w) four bits of storage
- (j) A 32-bit data word consists of
 - (2 bytes
 - (ii) 4 nibbles
 - (iii) 4 bytes
 - (w) 3 bits and 1 nibble

(4)

akubihar.com

			-	
	2.	10)	Make a K-map for the function	
<u>ر</u>	/	/	$F = A\overline{B} + AC + A\overline{D} + AB + ABC$	5
	_	(b)	Express F, in standard SOP and POS form.	5
		(c)	Minimize \dot{F} and realize the minimal expression using NOR gate only.	4
	3.	<u>[a]</u> ,	Prove the following algebraically :	
-	1		2%+2%	1#D
			$(i) (A+B)(A+\overline{B}) = A \oplus B \setminus$	*
			$(\overline{u}) \ (A+B)(A+\overline{B})(\overline{A}+B) = AB$	
•	-	Cot	-Convert decimal number 75 into Grey code.	4
		(c)	Verify a two-level AND-OR gate is equivalent to NAND-NAND.	5
	4.	(a)	Draw a circuit diagram of an RTLEX-OR gate. Explain its operation.	7
		(b)	Draw a circuit diagram of DTL gate and explain it. What are fan-in and fan-out? How will you increase the fan-out of the	
2			gate?	7
.1			akuhihar com	

(6)

akubihar.com

- 9. Write short notes on any two of the following : 7×2=14
 - (a) Data transfer in a shift register

(b) ROM

7

7

7

7

- (c) Astable multivibrator using 555
- (d) Digital comparator

akubihar.com

5. (a) Design a full adder using only NAND gate.
(b) Design a 8 to 1 line multiplexer using 4 to 1 line multiplexer.

- (a) Differentiate between synchronous and asynchronous counter.
 - (b) Design a 4-bit synchronous up counter. 7
- 7. (a) Explain the following flip-flops with
 their diagrams and truth tables : 7
 (i) SR F/F
 (ii) J-K F/F
 - (iii) DF/F (iv) TF/F

(b)-Design D F/F from J-K F/F.

- (a) Explain the working principle of a successive approximation ADC with the help of circuit diagram.
 - (b) Find the output voltage from a 5-bit ladder D/A converter which has a digital input of 11010. Assume 0 = 0 V and 1 = +10 V.

<u>YEAR -2015</u>

Page 12 of 21

In a three-input NOR gate, the number of states in which output is one, equals

.

In which function each term is known

Digital technologies being used now-a-

as max term?

(ii) Both (i) and (ii)

(i) DTL and EMOS

(ii) TTL, ECL, CMOS and RTL

(iv) TTL, ECL, CMOS and DTL

A Karnaugh map with four variables has

.

(iii) TTL, ECL and CMOS

B.Tech 4th Semester	т Елат., 2015		(c)		three-ing ates in wi
DIGITAL ELECT	RONICS			R)	1
Time : 3 hours	Full Marks : 70			.,	2
Instructions :				(iii) (iv)	3 4
(i) The marks are indicated in t	the right-hand margin.		(d)		
(ii) There are NINE questions i	n this paper.		(u)		vhich fun nax term
(iii) Attempt FIVE questions in a	all.	*		(i)	SOP
(iv) Question No. 1 is compulso	ry.	ww.a		<u>∕(ü)</u>	POS
 Choose the correct option the following : 	from any <i>seven</i> of 2×7=14	www.akubihar.com		(iii) (iii)	Hybrid Both <i>(i)</i> :
(a) Digital circuits most	y use	r.com	(e)		ital techn s are
(i) diodes		-		(i)	DTL and
(ü) bipolar transistor	18			(ii)	TTL, EC
(jii) diodes and bipol:	ar transistors			(iii)	TTL, EC
(iv) bipolar transistor	rs and FET			(iv)	TTL, EC
(b) Which of the followin is equivalent to decin	* *		(f)	A K. (i)	arnaugh 2 cells
<i>(i)</i> 1000				(9 (ü)	4 cells
<i>(ii)</i> 1100				(iii)	8 cells
<i>ųžit</i>) 1010				(w)	16 cells
(iv) 1001					10 0000

- (g) A three-bit binary adder should use
 - 1 3 full adders
 - (ii) 2 full adders and one half adder
 - (iii) 1 full adder and 2 half adders
 - (iv) 3 half adders
- (h) Which device changes parallel data to serial data?
 - (i) Decoder
 - (ii) Multiplexer
 - (iii) Demultiplexer
 - (iv) Flip-flop
- (i) A mod 4 counter will count
 - (i) from 0 to 4
 - (ii) from 0 to 3
 - (iii) from any number n to n+4
 - (iv) None of the above
- (j) The access time of ROM using bipolar transistor is about
 - (i) 1 sec
 - (ii) 1 milisec
 - (iii) 1 microsec
 - (iv) 1 nanosec

3/1

www.akubihar.com

(a) Convert the following decimal number into binary numbers :

- (1) (39.12)10
- (1) (675-634)10
- (b) Convert the following into binary numbers :
 - (1) (278)8
 - (ii) (E7 F6)16
- (c) Write truth table for 3-input XOR gate and realize it by using NOR gate.
- (d) Convert decimal number 35 into gray code. 4+3+4+3=14
- (a) Simplify the function and draw a circuit
 to realize the simplified function

 $Y = [A\overline{B} (C + BD) + \overline{A} \overline{B}]C$

- (b) $Y = \Pi M(0, 1, 3, 5, 6, 7, 10, 14, 15)$ Draw the logic circuit for the simplified function. 6+8=14
- 4/(a) Explain the operation of TTL NAND gate with totem pole output.
 - (b) What is the difference between current sourcing and current sinking? 8+6=14

- 5. (a) What is the difference between decoder and encoder? Draw the logic circuit of decimal to BCD encoder and explain its working.
 - (b) What is demultiplexer? Draw its block diagram and explain its working. 7+7=14
 - (a) Differentiate between combinational circuit and sequential circuit.
 - (b) Explain the working of S-R flip-flop with the help of a neat diagram. 6+8=14
- (a) Draw the circuit of a 4-bit ripple counter. Explain its working. Draw its timing diagram.
 - (b) Draw the circuit of a serial-in, serial-out shift resistor and explain its working. 7+7=14
- (a) Draw the circuit of a binary ladder network A/D converter and explain its working.
 - (b) Draw a circuit of astable multivibrator using timer 555 and explain its working. 7+7=14

Write short notes on any two of the following : 7×2=14 EPROM (b) ROM Full subtractor and half subtractor (c)

(d) Magnitude comparators

YEAR -2016

www.akubihar.com

۲

			The second s		
9. Write notes of	n the following :	5+5+4=14	B.Tech 4th Semester Exam., 2016		
(a) Monostab	le multivibrator usi	ng 555 timer			
(b) RAMs			DIGITAL ELECTRONICS		
(c) ECL			Time : 3 hours akubihar.com Full Marks : 70		
•••			Instructions :		
			 (i) The marks are indicated in the right-hand margin (ii) There are NINE questions in this paper. 		
			(iii) Attempt FIVE questions in all.		
			(iv) Question No. 1 is compulsory.		
			1. Fill in the blanks (any seven) : 2×7=14		
			(a) The number of rows in truth table of 04 variables is		
			(b) The number of 3-input NAND gates in a 14-pin IC is		
akubihar.com			(c) The number of characters represented by ASCII code is		
			(d) The distance between the code words 10010 and 10101 is		
			 (e) Power dissipation is negligibly small in devices. akubihar.com 		
AK16-1510/626		Code : 041402	$\mathcal{O}_{}$ is the fastest logic family.		

- (g) The figure of merit of a digital IC is given by ____.
- (h) _____ code is used for labelling the cells of K-map.
- (i) Subtractors are designed using _____ ICs.
- Registers and counters can be designed using _____
- (a) Determine the decimal numbers represented by the binary number

(101101-10101)2

- (b) Convert (10-625)10 in the binary form.
- (c) Subtract (7-5) using 2's complement representation of negative number. 5+5+4=14
- Design 4-bit Binary-to-Gray code converter circuits.
 14
- (a) Implement the following multi-output combinational logic circuit using a 4-to-16 line decoder :

$$\begin{split} F_1 &= \sum m(1, 2, 4, 7, 8, 11, 12, 13) \\ F_2 &= \sum m(2, 3, 9, 11) \\ F_3 &= \sum m(10, 12, 13, 14) \\ F_4 &= \sum m(2, 4, 8) \end{split}$$

(b) Realize f₁ = Σm[0, 3, 5, 6, 9, 10, 12, 15] using 8 : 1 multiplexers. 7+7=14

- (a) Draw master-slave J-K flip-flop using NAND gates.
 - (b) Explain a 4-bit <u>bidirectional</u> shift register with neat circuit diagram. 7+7=14
- (a) Design a 3-bit binary UP/DOWN counter with a direction control M. Use J-K flip-flops.
 - (b) Draw modulo-125 ripple counter. 10+4=14
- (a) Draw <u>CMOS</u> NAND gates and NOR gates.
 - (b) Draw NOT gate, OR gate and AND gate using RTL.
 - (c) Draw TTL with totem pole output and explain its operation. 4+5+5=14
- (a) Define the following characteristics of a D/A converter :
 - (i) Resolution
 - (ii) Linearity
 - (iii) Accuracy
 - (iv) Settling time
 - (v) Temperature sensitivity
 - (b) Draw and explain 3-bit parallel comparator (flash) A/D converter. 7-7=14

<u>YEAR -2017</u>

akubihar.com

Code: 041402

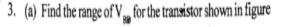
B.Tech 4th Semester Examination, 2017

Digital Electronics

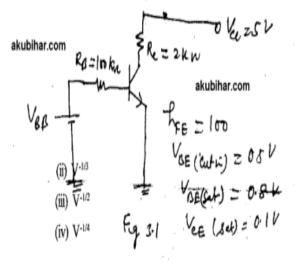
Time : 3 hours

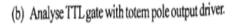
Full Marks : 70

Instructions :


- (i) There are Nine Questions in this Paper.
- (ii) Attempt Five questions in all.
- (iii) Question No. 1 is Compulsory. akubihar.com
- (iv) The marks are indicated in the right-hand margin.
- Fill in the blanks.
 - (a) The MSB of a signal-binary number indicates its_____
 - (b) The principle cause of propagation delay in a p-n junction is removal of _____ charge carriers.
 - (c) Fan-in signifies _____ of a gate. akubihar.com
 - (d) The temperature range for 74-series ICs is _____.

 - (f) A ______ is a logic circuit that accepts one data input and distributes it over several outputs.
 - (g) sub tractors are designed using _____ICs.
 - (h) Register and counters can be designed using_____
 - (i) Ripple counter is ______ sequential circuits.


akubihar.com


P.T.O.

- (j) The linearity of a D/A converter is specified as ______
 LSB. akubihar.com
- 2. (a) Draw EX-OR gates using only 4-NAND gates only.
 - (b) Draw NAND gates using Transistors and Resisters.
 - (c) Convert (11111), into gay code. 14

- (3.1) or
- (i) in the cut-off region
- (ii) in the active region
- (iii) in the saturation region

akubihar.com

6+8

(a) Minimise in POS form $f(A,B.C.D) = \prod M(4, 6, 10, 12, 13, 15)$ Code : 041402 2

(b) Minimise f(A,B,C,D)=	$AB\overline{C}D^+\overline{A}BCD^+\overline{A}\ \overline{B}\ \overline{C}$
$+\overline{A}\overline{B}\overline{D}+A\overline{C}+A\overline{B}$	C+ B 14

- 5. (a) Design 16:1 multiplexer using 8:1 MUX.
 - (b) Design 3-bit Gray-to-Binary Converter. 6+8
- 6. (a) Explain Race-Around condition.
 - (b) Draw J-K flip-flop and explain its operation.
 - (c) Draw D-Flip flop and T-flip flop wing J-K FF.

akubihar.com 4+6+4

- (a) Design modulo-10 synchronous counter using J-K flip flop.
 - (b) Explain lock-out condition in counter.
 - (c) Draw 4-bit left to Right shaft register and explain its operation. akubihar.com 7+3+4
- 8. (a) Draw 3-bit successive type A/D converter and explain its operator.
 - (b) Explain basic blocks of 555-timer. 8+6
 - 9. Write notes on following-
 - (a) RAMs.
 - (b) Non-saturated logic families.

7+7

DARBHANGA COLLEGE OF ENGINEERING, DARBHANGA

3rd Sem. Branch:- EEE Batch- (2019-22) Subject :- Digital Electronics

S.No.	Name of Student	Class Roll	Registration No.
1	SHASHIBHUSHAN RAM	18EE02	18110111005

2	NITESH KUMAR PASWAN	18EE05	18110111013
3	MANJU KUMARI	18EE25	18110111020
4	AMRENDRA KUMAR	18EE47	18110111032
5	VIVEK KUMAR	18EE64	18110111039
6	DIPANSHU KUMAR	18EE77	18110111042
7	ABHISHEK KUMAR	18EE72	18110111043
8	ARCHNA KUMARI	18EE78	18110111047
9	ABHISHEK KUMAR	19EE54	19110111001
10	VIVEK KUMAR	19EE26	19110111002
11	ANKIT KUMAR	19EE08	19110111005
12	MD ASIF HUSSAIN	19EE30	19110111006
13	ABHISHEK RAJ	19EE20	19110111007
14	AMAN KUMAR	19EE34	19110111008
15	RANI KUMARI	19EE37	19110111009
16	SWATI SUMAN	19EE11	19110111010
17	AVINASH KUMAR	19EE28	19110111011
18	NITU KUMARI	19EE13	19110111012
19	RITI KUMARI	19EE18	19110111013
20	SAURAV BHUSHAN	19EE60	19110111014
21	UDIT KUMAR RANJAN	19EE32	19110111016
22	PRATYUSH KUMAR	19EE29	19110111017
23	NAYAN YADAV	19EE27	19110111018
24	ARUN KUMAR	19EE46	19110111019
25	HARSHIT RAJ	19EE01	19110111020
26	ATHARVA ADITYA	19EE47	19110111021
27	SAMI KUMAR	19EE31	19110111022
28	SAMEER KUMAR	19EE12	19110111023
29	JYOTI ANGEL	19EE52	19110111024
30	SAUMYA KUMARI	19EE53	19110111025
31	AMIT KUMAR CHAUDHARY	19EE58	19110111026
32	VIBHOOTI KUMAR	19EE09	19110111027
33	ANAND KUMAR	19EE51	19110111028
34	GOVIND KUMAR	19EE42	19110111029
35	RICHA SHUKLA	19EE38	19110111030
36	JAYHIND KUMAR	19EE40	19110111031
37	HARSH RAJ	19EE45	19110111032
38	ROUSHAN RAJ	19EE44	19110111033
39	CHANDRAKANT KUMAR	19EE61	19110111034
40	BINIT KUMAR PASWAN	19EE49	19110111035
41	ASHISH KUMAR	19EE45	19110111038

42	SHRUTI KUMARI	19EE17	19110111039
43	MANISH KUMAR	19EE05	19110111040
44	APARNA RAJ LAXMI	19EE41	19110111041
45	SHIVANI KUMARI	19EE22	19110111042
46	SAURABH KUMAR	19EE03	19110111043
47	AKSHAY KUMAR THAKUR	19EE02	19110111044
48	PREM PRAKASH	19EE21	19110111045
49	SONI KUMARI	19EE07	19110111046
50	AARTI KUMARI	19EE59	19110111047
51	CHANDAN KUMAR	19EE43	19110111048
52	SONU KUMAR	19EE15	19110111049
53	MD REHAN SHAKEEL	19EE24	19110111050
54	MD AQUBAL HUSSANI	19EE21	19110111050
55	SIDDHARTH SUMAN	19EE56	19110111052
56	APURWA KASHYAP	19EE25	19110111053
57	PRIYA RANI	19EE25	19110111054
58	DURGESH KUMAR THAKUR	19EE35	19110111055
59	AADITYA KUMAR	19EE19	19110111056
60	RISHI RANJAN	19EE10	19110111057
61	HIMANSHU KUMAR	19EE39	19110111058
62	PRIYANSHU KUMAR	19EE57	19110111059
63	ANJALI KUMARI	20LE-EE02	20110111901
64	HARSH KUMAR	20LE-EE01	20110111902
65	MANISH KUMAR PRASAD	20LE-EE14	20110111903
66	ABHISHEK KUMAR	20LE-EE05	20110111904
67	HIMANSHU KUMAR	20LE-EE11	20110111905
68	ADITYA KUMAR	20LE-EE04	20110111906
69	SANTOSH KUMAR	20LE-EE10	20110111907
70	ADITYA KUMAR	20LE-EE13	20110111908
71	RAKESH KUMAR JHA	20LE-EE12	20110111909
72	ANJALI KUMARI	20LE-EE03	20110111910
73	POOJA KUMARI	20LE-EE08	20110111911
74	KAJAL KUMARI	20LE-EE07	20110111912
75	SUBHASH KUMAR	20LE-EE06	20110111913
76	SHYAM KUMAR	20LE-EE09	20110111914