
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/264005162

An Introduction to Microprocessor 8085

Book · January 2010

CITATION

1
READS

263,461

1 author:

Some of the authors of this publication are also working on these related projects:

Modeling View project

D.K. Kaushik

Shobhit University, Gangoh (Saharanpur) India

44 PUBLICATIONS 40 CITATIONS

SEE PROFILE

All content following this page was uploaded by D.K. Kaushik on 25 August 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/264005162_An_Introduction_to_Microprocessor_8085?enrichId=rgreq-38cfe334fb25622ab130070703f78156-XXX&enrichSource=Y292ZXJQYWdlOzI2NDAwNTE2MjtBUzoxMzQwOTYwMDkzMDYxMTlAMTQwODk4MjM4OTAyOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/264005162_An_Introduction_to_Microprocessor_8085?enrichId=rgreq-38cfe334fb25622ab130070703f78156-XXX&enrichSource=Y292ZXJQYWdlOzI2NDAwNTE2MjtBUzoxMzQwOTYwMDkzMDYxMTlAMTQwODk4MjM4OTAyOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Modeling-34?enrichId=rgreq-38cfe334fb25622ab130070703f78156-XXX&enrichSource=Y292ZXJQYWdlOzI2NDAwNTE2MjtBUzoxMzQwOTYwMDkzMDYxMTlAMTQwODk4MjM4OTAyOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-38cfe334fb25622ab130070703f78156-XXX&enrichSource=Y292ZXJQYWdlOzI2NDAwNTE2MjtBUzoxMzQwOTYwMDkzMDYxMTlAMTQwODk4MjM4OTAyOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dr_DK_Kaushik?enrichId=rgreq-38cfe334fb25622ab130070703f78156-XXX&enrichSource=Y292ZXJQYWdlOzI2NDAwNTE2MjtBUzoxMzQwOTYwMDkzMDYxMTlAMTQwODk4MjM4OTAyOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dr_DK_Kaushik?enrichId=rgreq-38cfe334fb25622ab130070703f78156-XXX&enrichSource=Y292ZXJQYWdlOzI2NDAwNTE2MjtBUzoxMzQwOTYwMDkzMDYxMTlAMTQwODk4MjM4OTAyOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dr_DK_Kaushik?enrichId=rgreq-38cfe334fb25622ab130070703f78156-XXX&enrichSource=Y292ZXJQYWdlOzI2NDAwNTE2MjtBUzoxMzQwOTYwMDkzMDYxMTlAMTQwODk4MjM4OTAyOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dr_DK_Kaushik?enrichId=rgreq-38cfe334fb25622ab130070703f78156-XXX&enrichSource=Y292ZXJQYWdlOzI2NDAwNTE2MjtBUzoxMzQwOTYwMDkzMDYxMTlAMTQwODk4MjM4OTAyOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

AN INTRODUCTION TO M ICROPROCESSOR 8085

By

Dr. D. K. Kaushik
Principal, Manohar Memorial (P.G.) College,

Fatehabad (Haryana) India

Dhanpat Rai Publishing co., New Delhi

AN INTRODUCTION TO M ICROPROCESSOR 8085

Chapter 1 Evolution and History of Microprocessors
1.1 Introduction
1.2 Evolution/History of Microprocessors
1.3 Basic Microprocessor System
 1.3.1 Address Bus
 1.3.2 Data Bus
 1.3.3 Control Bus
1.4 Brief Description of 8-Bit Microprocessor 8080A
1.5 Computer Programming Languages
 1.5.1 Low-Level Programming Language
 1.5.2 High-Level Programming Language
Chapter 2 SAP – I
2.1 Architecture of SAP – I
2.2 Instruction Set of SAP-I Computer
2.3 Programming of SAP-I Computer
2.4 Working of SAP-I Computer
 2.4.1 Fetch Cycle
 2.4.2 Execution Cycle
2.5 Hardware Design of SAP-I Computer
 2.5.1 Design of Program Counter
 2.5.2 Memory Unit
 2.5.3 Instruction Register
 2.5.4 Controller-Sequencer
 2.5.5 Accumulator
 2.5.6 Adder-Subtractor
 2.5.7 B-Register
 2.5.8 Output Register
Chapter 3 SAP – II
3.1 Architecture of SAP-II Computer
3.2 Instruction Set of SAP-II Computers
3.3 Machine Cycle and Instruction Cycle
3.4 Addressing Modes
3.5 Instruction Types
3.6 Flags
3.7 Assembly Language Programming
3.8 Delay Calculations
Chapter 4 SAP – III
4.1 Programming Model of SAP-III Computer
4.2 Instruction Set of SAP-III Computer
 4.2.1 Data Transfer Group
 4.2.2 Arithmetic Group of Instructions
 4.2.3 Logic Transfer Group
 4.2.4 Branch Group

 4.2.5 Stack and Input / Output Instructions
4.3 Time Delay Introduced by a Register Pair
Chapter 5 The 8085 Microprocessor
5.1 Architecture of 8085 Microprocessor
 5.1.1 Register Section
 5.1.2 Address Buffer and Address-Data Buffer
 5.1.3 Arithmetic and Logical Unit (ALU)
 5.1.4 Timing and Control Unit
 5.1.5 Interrupt Control
5.2 Pin Description of 8085
5.3 Instruction Set of 8085 Microprocessor
5.4 Timing Diagram for 8085 Instructions
 5.4.1 Timing Diagram of MOV reg, M
 5.4.2 Timing Diagram of MOV M, reg
 5.4.3 Timing Diagram of MVI reg, data
 5.4.4 Timing Diagram of MOV reg2, reg1
 5.4.5 Timing Diagram of MVI M, data
 5.4.6 Timing Diagram of XCHG
 5.4.7 Timing Diagram of LXI rp, dbyte
 5.4.8 Timing Diagram of IN byte
Chapter 6 Programming of 8085
6.1 Simple Progams
6.2 Progams on code conversion

 6.2.1 BCD to Binary Conversion
 6.2.2 Binary to BCD (Unpacked) Conversion
 6.2.3 Binary to ASCII Conversion
 6.2.4 ASCII to Binary Conversion

6.3 Progams on addition and subtraction
6.4 Progams to find largest or smallest number
6.5 Progams to arrange a given series in ascending or descending order
6.6 Program on Multiplication
6.7 Program on 8-Bit Division
6.8 Miscellaneous Programs
Chapter 7 Interrupt Instructions of 8085
7.1 Methods of I/O Operations

 7.1.1 Memory Mapped I/O
 7.1.2 I/O Mapped I/O or Isolated I/O
7.2 Data Transfer Schemes
 7.2.1 Programmed I/O Data Transfer
 7.2.2 Interrupt Driven I/O Data Transfer
 7.2.3 Direct Memory Access (DMA) Data Transfer
7.3 The 8085 Interrupts
7.4 Software Interrupts
7.5 Hardware Interrupts
7.6 Interrupt Control Circuit
7.7 Interrupt Instructions

7.8 Serial Input and Output Data Transfer
Chapter 8 Programmable Peripheral Interface (PPI) 8255A
8.1 Details of PPI IC 8255A
8.2 Operational Modes of 8255A
8.3 Control Word Format for 8255A
8.4 Programming in Mode 0
8.5 Programming in Mode 1 (strobed Input/Output)
 8.5.1 Input Control Signals in Mode 1
 8.5.2 Output Control Signals in Mode 1
8.6 Programming in Mode 2 (Strobed Bidrectional Bus I/O)
8.7 Bit Set/Reset (BSR) Mode
Chapter 9 Programmable Interval Timer/Counter: 8253
9.1 INTEL Programmable Interval Timer 8253
9.2 Block Diagram of 8253
9.3 Logics for Counters
9.4 Control Word Format of 8253
9.5 Interfacing and programming of 8253
9.6 Programming of 8253 in Mode 0: Interrupt on Terminal Count
9.7 Programming of 8253 in Mode 1: Programmable One Shot
9.8 Programming of 8253 in Mode 2: Rate Generator
9.9 Programming of 8253 in mode 3: Square Wave Generator
9.10 Programming of 8253 in mode 4: Software Triggered Strobe
Chapter 10 Programmable Keyboard and Display Interface: 8279
10.1 INTEL Programmable Keyboard/Display Interface 8279
10.2 Block Diagram of 8279
10.3 Functional Description of 8279
10.4 Key Board San
10.5 Scanned Keyboard
 10.5.1 Two-key Lockout
 10.5.2 N-key Rollover
10.6 Scanned Sensor Matrix
10.7 Strobed Input
10.8 Display Interface
10.9 Display Modes

10.9.1 Left Entry Mode (Type Writer Mode)
10.9.2 Right Entry Mode (Calculator Mode)

10.10 Programming of 8279
 10.10.1 Keybaord/Display Mode Set
 10.10.2 Program Clock
 10.10.3 Read FIFO/Sensor RAM
 10.10.4 Read Display RAM
 10.10.5 Write Display RAM
 10.10.6 Display Write Inhibit/Blanking
 10.10.7 Clear

10.10.8 End Interrupt/Error Mode Set
10.11 Status Register (IN Operation)

10.12 Interfacing of 8279 with 8085
Chapter 11 Programmable Interrupt Controller: 8259
11.1 Programmable Interrupt Controller 8259
11.2 Block Diagram of 8259
11.3 Interfacing of 8259A with 8085A
11.4 Vectoring Data Formats for 8259
11.5 Initialization of 8259
11.6 Initialization Command Words (ICWs)
11.7 Operation Command Words (OCWs)
11.8 Interrupt Modes of 8259A
 11.8.1 Fully Nested Mode (FNM)
 11.8.2 Rotating Priority Mode
 11.8.3 Special Mask Mode
 11.8.4 Polled Mode
11.9 Status Read Operation of 8259
Chapter 12 Direct Memory Access Controller: 8257
12.1 Block Diagram of 8257
 12.1.1 DMA Channels
 12.1.2 Data Bus Buffer
 12.1.3 Read/ Write Logic
 12.1.4 Control Logic

12.1.5 Mode Set Register
12.1.6 Status Word Register

12.2 Programming of 8257
12.3 DMA Interfacing Circuit
Chapter 13 Interfacing Data converters: A/D and D/A Converters
13.1 Digital to Analog Converter

 13.1.1 Resistive Divider D/A converter

 13.1.2 Binary Ladder D/A Converter

13.2 Performance Criteria for D/A Converter

13.3 D/A Converter IC 0808

13.4 Interfacing of D/A Converter

13.5 Microprocessor Compatible D/A Converter

13.6 Analog to Digital Converter

13.7 Simultaneous A/D Converter

13.8 Successive Approximation A/D Converter
13.9 Counter or Digital Ramp Type A/D Converter

13.10 Single Slope A/D Converter

13.11 Dual Slope A/D Converter
13.12 ADC 0808/0809

13.13 A/D Converter Using D/A Converter and Software

Chapter 14 Serial Communication and Programmable Communication
Interface

14.1 Serial Data Communication

14.2 Modem

14.3 Serial Communication Standard

14.4 Asynchronous Software Approach

14.5 Programmable Communication Interface

14.6 Block Diagram of 8251A

 14.6.1 Read/Write Control Logic

 14.6.2 Transmitter Section

 14.6.3 Receiver Section

 14.6.4 Modem Control

14.7 Interfacing of 8251A

14.8 Programming of 8251A

 14.8.1 Initialization of 8251A in Asynchronous Mode

 14.8.2 Initialization of 8251A in Synchronous Mode

Chapter 15 Applications of Microprocessor
15.1 Real Time Clock with On/Off Timer

15.2 Microprocessor Based LED Dial Clock
15.3 Design of Microprocessor Based Running light
15.4 Microprocessor Based Automatic School bell system
15.5 Microprocessor Based Traffic Light
 15.5.1 Another Design of Microprocessor Based Traffic Light
15.6 Microprocessor Based Stepper Motor Control
15.7 Microprocessor Based Washing Machine Controller
15.8 Microprocessor Based Water Level Controller
15.9 Microprocessor Based Temperature Controller

Appendices

1
Evolution and History of

Microprocessors

To understand the working and programming of microprocessors, it is very

necessary to know the details of evolution and history of microprocessors which will be
discussed in this chapter. In the succeeding chapters of this book, the detailed discussion
on the basics of microprocessors will be made. For the beginners it is very difficult to
understand the operation of a digital computer as it contains large details, so efforts have
been made to envisage the operation of a digital computer in step by step manner.

1.1 INTRODUCTION

 Microprocessor is a digital device on a chip which can fetch instructions from a
memory, decode and execute them i.e. performs certain arithmetic and logical operations,
accept data from input device, and send results to output devices. Therefore, a
microprocessor interfaced with memory and Input/ Output devices forms a
Microcomputer. Basically, there are five building blocks of a digital computer namely:

Input Unit Through this unit data and instructions are fed to the memory of the

computer. The basic purpose of this unit is to read the data into the
machine. The program from the memory is read into the machine
along with the input data which are required to solve or compute the
problem by the machine. The typical devices which are used for this
purpose are keyboards, paper tape reader and toggle switches etc.

Memory Unit The memory unit of a digital computer consists of devices which are

capable of storing information. The memory of a computer is used
for storing two distinct type of information such as data to be
processed by the computer and program through which the result of
the desired problem is obtained. Computer program and data are
stored in the Memory Unit. This usually consists of chips of both
ROMs (Read Only Memories) and RAMs (Random Access
Memories) either bipolar or MOS.

 2

Arithmetic and This unit is used for performing arithmetic operations such as
Logical Unit Addition, Subtraction, Multiplications, division and other logical
(ALU) operations on the data.

The control unit guides ALU which of the operations are to be
performed. The sequence of the instructions is controlled by the
control unit.

Control Unit The control unit performs the most important function in a computer.

It controls all other units and also controls the flow of data from one
unit to another for performing computations. It also sequences the
operations. It instructs all the units to perform the task in a particular
sequence with the help of clock pulses.

Output Unit After processing of the data in the Arithmetic and Logical Unit, the

results are displayed to the output world through this unit. The CRTs
(Cathode Ray Tubes), LEDs (Light Emitting Diodes) and Printer etc.
form the output unit.

 In a computer system ALU and Control Unit are combined in one unit called

Central Processing Unit (CPU). The block diagram of a computer is shown in figure 1.1.

Fig. 1.1

 3

 The Central Processing Unit is analogous to the human brain as all the decisions
as per the instructions are made by CPU. All other parts are also controlled by this unit. A
microprocessor is an integrated circuit designed for use as Central Processing Unit of a
computer. The CPU is the primary and central player in communicating with devices
such as memory, input and output. However, the timing of communication process is
controlled by the group of circuits called control unit.

 The term ‘Microprocessor’ came into existence, in 1971, when the Intel
Corporation of America, developed the first microprocessor (INTEL-4004) which is a 4-
bit microprocessor (µ p). A microprocessor is a programmable digital electronic

component that incorporates the functions of a Central Processing Unit (CPU) on single
semi-conducting Integrated Circuits (ICs). As such, a system with microprocessor as an
integral part is termed as a microprocessor based system. When a computer is
microprocessor based, it is called a microcomputer (µ c).

 A microprocessor is specified by its ‘Word Size’, e.g. 4-bit, 8-bit, 16-bit etc. By
the term ‘word size” means the number of bits of data that is processed by the
microprocessor as a unit. For example, an 8-bit microprocessor performs various
operations on 8-bit data. It also specifies the width of the data bus. As discussed above, a
microcomputer consists of input/ output devices, and memory, in addition to
microprocessor which acts its CPU. In fact CPU is commonly referred to microprocessor
(µ p). Microprocessors made possible the advent of the microcomputer in the mid-1970s.

Before this period, electronic CPUs were typically made from bulky discrete switching
devices. Later on small-scale integrated circuits were used to design the CPUs. By
integrating the processor onto one or very few large-scale integrated circuit package
(containing the equivalent of thousands or millions of discrete transistors), the cost of
processor was greatly reduced.

 The evolution of microprocessors has been known to follow Moore’s law when it
comes to steadily increasing performance over the years. This law suggests that the
complexity of an integrated circuit, with respect to minimum component cost, doubles in
every 18 months. This dictum has generally proven true since the early 1970’s. This lead
to the dominance of microprocessors over every other form of computer; every system
from the largest mainframes to the smallest hand held computers now uses a
microprocessor as its core.

 The microprocessor based systems play significant role in the every functioning
of industrialized societies. The microprocessor can be viewed as a programmable logic
device that can be used to control processes or to turn on/off devices. So the
microprocessor can be viewed as a data processing unit or a computing unit of a
computer. The microprocessor is a programmable integrated device that has computing
and decision making capability similar to that of the central processing unit (CPU) of a
computer. Nowadays, the microprocessor is being used in a wide range of products called
microprocessor based products or systems. The microprocessor communicates and
operates in the binary numbers 0 and 1, called bits. Each microprocessor has a fixed set

 4

of instructions in the form of binary pattern called a machine language. However, it is
difficult for human beings to communicate in the language of 0s and 1s. Therefore, the
binary instructions are given abbreviated names, called mnemonics, which form the
assembly language for a given microprocessor.

1.2 EVOLUTION/HISTORY OF MICROPROCESSORS

 An English Mathematician Charles Babbage was the first man to propose the
basic principle of modern computers from 1792-1871. He gave the concept of a
programmable machine having computer similar to modern digital computers. He is,
therefore, known Father of Modern Computers. In 1930s successful general purpose
mechanical computer was developed. Before this, mechanical calculators were built to
perform simple mathematical operations such as addition, subtraction, multiplication and
division. Improvement continued and in 1944 Prof. H. Aiken developed a first practical
electro-mechanical digital computer in collaboration with IBM. This computer was
known as HAWARD MARK-I. It was in large size (51’ long and 8’high) and weighing
about 2 tons. The punch cards ware used to input the data in the computer.

 During the development of the HAWARD MARK-I Computer, Konard Joos of
Germany was busy in developing another computer based on 0’s and 1’s rather than
decimal numbers. So he developed a computer making use of relays (on-off for 1’s and
0’s) during 1936-44. Joos also developed a language for the computer. The giant
machines during 1940-50 were thus designed using relays and vacuum tubes.

 In 1945, John J. Mauchy and J. Presper Eckert of University of Pennsylvania
developed first electronic computer ENIAC (Electronic Numerical Integrator and
Calculator). It was too huge weighing 30 tons and occupied an area '50X'30 and made
use of 18000 vacuum tubes, more than 30000 resistors, 10000 capacitors and 6000
switches. It took 200 Sµ for addition, and 3mS for 10-digit multiplication. It had
separate memory for program and data. It used 20 electronic accumulators for memory.
Each accumulator stored signed 10-digit decimal number. A number of computers using
vacuum tubes were developed during 1940-55. The main drawback with the ENIAC was
the life of the vacuum tube components, which required the frequent maintenance.

 The invention of semiconductor transistors in 1948 at Bell Laboratories leads
further development of computers. The use of semiconductor transistors could not only
reduced the size of computers but also increased its capability to a great extent. This leads
reduction in cost. Further, the invention of Integrated circuits in 1958 by Jack Kilby of
Texas Instrument made a revolution in electronic circuitry. The use of ICs made the size
of computers very small and became more versatile in functions. Finally, the advent of
IC technology leads to the development of first microprocessor (INTEL 4004) in 1971 at
Intel Corporation by an engineer Marcian E. Hoff. It was a 4-bit microprocessor – a
programmable controller on a chip. This was called the first generation microprocessor. It
was fabricated using P-channel MOSFET technology and had an instruction set of 45
different instructions. It addressed 4096 four-bit wide memory locations. The P-channel
MOSFET technology gave low cost but low speed not compatible with TTL (Transistor-

 5

Transistor Logic) technology. It has to use at least 30 ICs to form a system. As INTEL
4004 had very small number of instructions, it could be used in limited applications such
as early video games and small microprocessor-based controllers. Seeing microprocessor
as a viable product, Intel Corporation released the 8008 microprocessor – an extended 8
bit version of the 4004 microprocessor in 1972. Soon a variety of microprocessors was
released by different manufactures. A few first generation microprocessors are listed in
table 1.1.

Table 1.1

4-bit Microprocessors

8-bit Microprocessors

 INTEL 4004
 INTEL 4040
 FAIRCHILD PPS-25
 ROCKWELL PPS-4
 NATIONAL IMP-4

 INTEL 8008
 NATIONAL IMP-8
 ROCKWELL PPS-8
 AMI 7200
 MOSTEK 5065

 Second generation microprocessors appeared in 1973 and used NMOS-
technology which offered faster speed, higher density and still better reliability. In the
year 1974, an 8-bit microprocessor INTEL 8080 was developed using NMOS
technology. It requires only two additional devices to design a functional CPU. It is much
faster than 8008 and has more instructions than 8008 that facilitates the programming.
The 8080 was compatible with TTL, whereas the 8008 was not directly compatible. The
8080 microprocessor could also address four times more memory (64K bytes) than the
8008 microprocessor (16K bytes). INTEL Corporation in 1977 developed another 8-bit
microprocessor 8085 which was proved to be a better version than 8080. The execution
time of two 8-bit numbers is 2.0 Sµ for 8085 whereas it is 1.3 Sµ for 8080. The main
advantages of the 8085 were its internal clock generator, internal system controller, and
higher clock frequency. Some of the important second generation microprocessors are
given in table 1.2.

Table 1.2

8-bit Microprocessors

12-bit Microprocessors

 INTEL 8080
 INTEL 8085
 FAIRCHILD F8
 MOTOROLA M6800
 ZILOG Z-80
 SIGNETICS 2650

 INTERSIL 6100
 TOSHIBA TLCS-12

 The advantages of second generation microprocessor are given below:

 6

(i) Larger chip size (170 X 200 mils),
(ii) 40 pins,
(iii) More number of on-chip decoded timing signals,
(iv) Ability to address larger memory space,
(v) Ability to address more I/O Ports,
(vi) More powerful instruction set,
(vii) Faster operation,
(viii) Better Interrupt handling capabilities.

 Third generation microprocessors were introduced in 1978. These were 16-bit
microprocessors, designed using HMOS (High Density MOS) technology. These
microprocessors offered better speed and higher packing density than NMOS. Some
important third generation microprocessors are given in table 1.3.

Table 1.3

16-bit Microprocessors

 INTEL 8086
 INTEL 8088
 INTEL 80186
 INTEL 80286

MOTOROLA-68000
MOTOROLA-68010
NATIONAL NS-16016
TEXAS INSTRUMENT-
TMS-99000

 INTERSIL 6100
 TOSHIBA TLCS-12
 ZILOG Z-8000

 In 1978, 16-bit INTEL 8086 microprocessor of 64 pins was introduced and in
1979 other 16-bit microprocessor 8088 was developed. In addition to the other
performances, these sµP contain multiply/divide/arithmetic hardware. The memory
addressing capabilities has been increased to very large i.e., 1MB to 16MB through a
variety of flexible and powerful addressing mode. The other characteristics of third
generation are given below:

(i) These microprocessors were 40/48/64 pins,
(ii) High speed and very strong processing capability,
(iii) Easier to program,
(iv) Allow for dynamically re-locatable programs,
(v) Size of internal registers were 8/16/32 bits,
(vi) These sµP had the multiply/divide/arithmetic hardware,
(vii) Physical memory space was from 1 to 16 Mega-bytes (MB),
(viii) Flexible 10 port addresses,
(ix) More powerful interrupt and hardware capabilities,
(x) Segmented address and virtual memory features.

 7

 Fourth generation microprocessors of 32 bits were introduced in the form of
80386 in 1985 and 80486 in 1989. The instruction set of the 80386 microprocessor was
upward compatible with the earlier 8086, 8088 and 80286 microprocessors. However, the
80486 is an improved version of the 80386 microprocessor. The 80386 executes many
instructions in 2 clock cycles while the 80486 executes in one clock cycle. These
microprocessors are of low power version of HMOS technology. Some important fourth
generation microprocessors are given in table 1.4.

Table 1.4

32-bit Microprocessors

 INTEL 80386
 INTEL 80486
 NATIONAL NS16022
 MOTOROLA MC 88100

 MOTOROLA M-68020
 MOTOROLA M-68030
 BELLMAC-32

 Fifth generation microprocessor was introduced by INTEL Corporation in 1993 in
the form of PENTIUM with 64 data bus. The Pentium was similar to the 80386 and
80486 microprocessor. The two introductory versions of the Pentium operated with a
clock frequency of 60 MHz and 66 MHz and a speed of 110 MIPS (Million Instructions
Per Second). With better and more advanced technologies, the speed of µPs has increased
tremendously. The old 8085 of 1977 executed 0.5 million instruction/sec. (0.5 MIPS),
while the 80486 executes 54 million instruction per sec.

 The Pentium Pro Processor is the Sixth generation microprocessor introduced in
1995 having better architecture but more in size. The Pentium Pro Microprocessor
contains 21 million transistors, 3 integer units as well as a floating unit to increase the
performance of most software. The basic clock frequency is 150 MHz and 166 MHz.

1.3 BASIC MICROPROCESSOR SYSTEM

 The Microprocessor alone does not serve any useful purpose unless it is supported
by memory and I/O ports. The combination of memory and I/O ports with
microprocessor is known as microprocessor based system. As discussed above the
microprocessor which is the central processing unit executes the program stored in the
memory and transfer data to and from the outside world through I/O ports. The
microprocessor is interconnected with memory and I/O ports by the data bus, the Address
bus and the control bus.
 A bus is basically a communication link between the processing unit and the
peripheral devices as shown in figure 1.2.

1.3.1 Address Bus

 8

The address bus is unidirectional and is to be used by the CPU to send out address
of the memory location to be accessed. It is also used by the CPU to select a particular
input or output port. It may consist of 8, 12, 16, 20 or even more number of parallel lines.
Number of bits in the address bus determines the minimum number of bytes of data in the
memory that can be accessed. A 16-bit address bus for instance can access 216 bytes of
data. It is labeled as A0…………An-1, where n is the width of bits of the address bus.

Fig. 1.2

1.3.2 Data Bus

Data bus is bidirectional, that is, data flow occurs both to and from CPU and
peripherals. There is an internal data bus which may not be of the same width as the
external data bus by that connects the I/O and memory. A microprocessor is characterized
by the width of its data bus. All those microprocessors having internal and external data
buses of different widths are characterized either by their internal or external data buses.
The size of the internal data bus determines the largest number that can be processed by a
microprocessor, for instance, having a 16-bit internal data bus is 65536 (64K). The bus is
labeled as: D0 ………………Dn-1, where n is the data bus width in bits

1.3.3 Control Bus

Control bus contains a number of individual lines carrying synchronizing signals.
The control bus sends out control signal to memory, I/O ports and other peripheral
devices to ensure proper operation. It carries control signals like MEMORY READ,
MEMORY WRITE, READ INPUT PORT, WRITE OUTPUT PORT, HOLD,
INTERRUPT etc. For instance, if it is desired to read the contents of a particular memory
location, the CPU first sends out address of that very location on the address bus and a
‘Memory Read’ control signal on the control bus. The memory responds by outputting
data stored in the addressed memory location on the data bus.

 9

 This book will confine the detailed study of 8085 microprocessor because it is
most commonly used microprocessor. However, evolution of microprocessors has been
discussed in this chapter, in order to have the knowledge microprocessors introduced so
far. Before discussing the details of the 8085, brief discussion of 8-bit microprocessor
8080 is given here.

1.4 BRIEF DESCRIPTION OF 8-BIT MICROPROCESSOR 8080A

Intel 8080 microprocessor is a successor to the Intel 8008 CPU. The Intel

8080/8080A was not object-code compatible with the 8008, but it was source-code

compatible with it. The 8080 CPU had the same interrupt processing logic as the 8008,

which made porting of old applications easier. Maximum memory size on the Intel 8080

was increased from 16 KB to 64 KB. The number of I/O ports was increased to 256. In

addition to all 8008 instructions and addressing modes the 8080 processor included

many new instructions and direct addressing mode. The 8080 also included new Stack

Pointer (SP) register. The SP was used to specify position of external stack in CPU

memory, and the stack could grow as large as the size of memory. Thus, the CPU was

no longer limited to 7-level internal stack, like the 8008 did.

The Intel 8080, an 8-bit microprocessor was very popular. Fig. 1.2 shows the
shape of the microprocessor and Fig. 1.3 shows the pin out configuration of the 8080A
microprocessor. Its salient features include:

a) A two-phase clock input Q1 and Q2
b) 16-bit address bus
c) 8-bit data bus
d) Power supply input of +5V, -5V and +12V required.
e) The 8080A places the status of the operation on the data bus during the

earlier part of the cycle and places data on the bus during later part of
cycle.

 Fig. 1.2

 10

Fig. 1.3

Program memory Pprogram can be located anywhere in memory. Jump, branch and

call instructions use 16-bit addresses, i.e. they can be used to

jump/branch anywhere within 64 KB. All jump/branch

instructions use absolute addressing.

Data memory The processor always uses 16-bit addresses so that data can be

placed anywhere.

Stack memory It is limited only by the size of memory. Stack grows downward.

 11

Interrupts The processor supports maskable interrupts. When an interrupt occurs the

processor fetches from the bus one instruction, usually one of these

instructions:

• One of the 8 RST instructions (RST0 - RST7). The processor saves current

program counter into stack and branches to memory location N * 8 (where N is a

3-bit number from 0 to 7 supplied with the RST instruction).

• CALL instruction (3 byte instruction). The processor calls the subroutine, address

of which is specified in the second and third bytes of the instruction.

The interrupt can be enabled or disabled using EI (Enable Interrupts) and DI (Disable

Interrupts) instructions.

I/O ports

256 Input ports

256 Output ports

Registers

Accumulator or A register is an 8-bit register used for arithmetic, logic, I/O and

load/store operations.

Flag is an 8-bit register contains the following five, 1-bit flags:

• Sign flag - set if the most significant bit of the result is set.

• Zero - set if the result is zero.

• Auxiliary carry flag - set if there was a carry out from bit 3 to bit 4 of the result.

• Parity flag - set if the parity (the number of set bits in the result) is even.

• Carry flag - set if there was a carry during addition, or borrow during subtraction/

comparison.

General registers:

• 8-bit B and 8-bit C registers can be used as one 16-bit BC register pair. When

used as a pair the C register contains low-order byte. Some instructions may use

BC register as a data pointer.

• 8-bit D and 8-bit E registers can be used as one 16-bit DE register pair. When

used as a pair the E register contains low-order byte. Some instructions may use

DE register as a data pointer.

 12

• 8-bit H and 8-bit L registers can be used as one 16-bit HL register pair. When

used as a pair the L register contains low-order byte. HL register usually contains

a data pointer used to reference memory addresses.

Stack pointer It is a 16 bit register. This register is always incremented/

decremented by 2.

Program counter It is also a 16-bit register.

Instruction Set

8080 instruction set consists of the following instructions:

• Data moving instructions.

• Arithmetic - add, subtract, increment and decrement.

• Logic - AND, OR, XOR and rotate.

• Control transfer – conditional, unconditional, call subroutine, return from

subroutine and restarts.

• Input/Output instructions.

• Other – setting/clearing flag bits, enabling/disabling interrupts, stack operations,

etc.

1.5 COMPUTER PROGRAMMING LANGUAGES

In order for computers to accept commands from human and perform tasks vital
to productivity, a means of communication must exist. Programming languages provide
this necessary link between man and machine. Because they are quite simple compared to
human language, rarely containing more than few hundred distinct words, programming
languages must contain very specific instructions. There are more than 2,000 different
programming languages in existence, although most programs are written in one of
several popular languages, like BASIC, COBOL, C++, or Java. Programming languages
have different strengths and weaknesses. Depending on the kind of program being
written, the computer will run on the experience of the programmer, and the way in
which the program will be used, the suitability of one programming language over
another will vary. One can categorize computer language as low Level and high level
programming languages which are being discussed in the subsequent subsections.

1.5.1 Low-Level Programming Language

A low-level programming language is a language that provides little or no
abstraction from a computer's instruction set architecture. The word "low" refers to the
small or nonexistent amount of abstraction between the language and machine language;
because of this, low-level languages are sometimes described as being "close to the

 13

hardware." A low-level language does not need a compiler or interpreter to run; the
processor for which the language was written is able to run the code without using either
of these.

By comparison, a high-level programming language isolates the execution
semantics of computer architecture from the specification of the program, making the
process of developing a program simpler and more understandable.

Low-level programming languages are sometimes divided into two categories:
first generation, and second generation programming languages.

First Generation Programming Language

The First-Generation Programming Language (1GL) is machine code or machine
language. Machine language is a language which is directly understood by a computer. It
is also called binary language as it is based on 0s or 1s. Any instruction in machine
language is represented in terms of 0’s and 1’s, even the memory addresses are given in
binary mode. Programs in machine language are very difficult to read and understand as
binary codes of each command can not easily be remembered. So it is very difficult and
complicated to write the computer program in machine language. The experienced
programmer can only work in machine language that too after having the good
knowledge of machine hardware. Programs written in machine language cannot easily be
understood by other programmers. Currently, programmers almost never write programs
directly in machine code, because as discussed above it not only require attention to
numerous details which a high-level language would handle automatically, but it also
requires memorizing or looking up numerical codes for every instruction that is used.

Second Generation Programming Language

The Second-Generation Programming Language (2GL) is assembly language.
Assembly language was first developed in the 1950s and it is different for different
microprocessors. It was the first step to improve the computer programming. For writing
the programs in assembly language it is necessary that the programmers should have the
knowledge of machine hardware. The assembly language eliminated much of the error-
prone and time-consuming first-generation programming needed with the earliest
computers, freeing the programmer from tedious or boring jobs such as remembering
numeric codes and calculating memory addresses. The assembly language was once
widely used for all sorts of programming. However, by the 1980s (1990s on small
computers), the use of assembly languages had largely been supplanted by high-level
languages, in the search for improved programming productivity.

Assembly languages are basically a family of low-level languages for
programming computers, microprocessors, microcontrollers etc. They implement a
symbolic representation of the numeric machine codes and other constants needed to
program a particular CPU architecture. This representation is usually defined by the
hardware manufacturer, and is based on abbreviations (called mnemonics) that help the

 14

programmer remember individual instructions, registers, etc. An assembly language is
thus specific to certain physical or virtual computer architecture. Instructions (statements)
in assembly language are generally very simple, unlike those in high-level languages.
Generally, an opcode is a symbolic name for a single executable machine language
instruction, and there is at least one opcode mnemonic defined for each machine language
instruction. Each instruction typically consists of an operation or opcode plus zero or
more operands. Most instructions refer to a single value, or a pair of values. Operands
can either be immediate (typically one byte values, coded in the instruction itself) or the
addresses of data located elsewhere in storage.

A typical assembly language statement of 8080A or 8085 microprocessor written
by the programmer is given below, which is divided in to four fields namely, Label,
Mnemonics or Operation code (Opcode), Operand and comments.

Label Mnemonics Operand Commnets

START: LXI H, 2500 H ; Initialize H-L register pair

A label for an instruction is optional, but it is very essential for specifying jump
locations. Similarly, comments are also optional but it is required for good
documentation. The four fields of assembly language statements shown above are
separated by the following delimiters:

Delimiters Placement

 Colon (:) A colon is placed after the Label. Label is optional.

 Space () Space is left between an opcode and operand.

 Comma (,) A comma is placed between two operands.

 Semicolon (;) Semicolon is placed between the comments.

The program written in assembly language is converted to machine language
manually. For writing the program in machine language, the starting address, where the
program is to be stored should be known. Now the op code of the instruction is to be
written in first location (starting address) and in the consecutive memory locations data
/address of the operand is written. While storing the address in the memory locations,
lower byte of he address is stored first then the upper byte.

A utility program called an assembler is used to translate assembly language
statements into the target computer's machine code. The assembler performs a more or
less isomorphic translation (a one-to-one mapping) from mnemonic statements into
machine instructions and data. The reverse process that is conversion of machine
language to the assembly language is done by deassembler.

 15

For software development for a microprocessor/ microcomputer (written in
assembly language in large number of instructions), it is absolutely essential to use an
assembler. In fact assembler translates mnemonics into binary code with speed and
accuracy; thus eliminating human error in looking for the opcodes. Other advantages of
using the assembler for the software development are as follows:

• It assigns appropriate values to the symbols used in a program. This
facilitates specifying jump locations.

• The assembler checks syntax errors, such as wrong labels and expressions,
and provides error messages. However it cannot check logic errors in a
program.

• It is easy to insert or delete instructions in a program; the assembler can
reassemble the entire program quickly with new memory locations and
modified addresses fro jump locations. This avoids rewriting the program
manually.

1.5.2 High-Level Programming Language

The machine language and assembly languages discussed above are the first and
second generation programming languages which fall in the category of low level
languages. These languages require deep knowledge of computer hardware. The high
level computer languages developed around 1960s are machine independent i.e. computer
hardware is not necessary to know for the programmers. In high level languages one has
to know only the instructions in English word and logic of the problem irrespective of the
types of computer being used. For the computer programming prepared in high level
language, only the use of English alphabets and mathematical systems like +, -, /, * etc.
are made. In fact high level language is more close to user and is easy to read and
understand. The high level languages are called procedural language and are designed to
solve general and specific problems.

The term "high-level language" does not imply that the language is superior to
low-level programming languages - in fact high level refers to the higher level of
abstraction from machine language. They have no opcodes that can directly compile the
language into machine code, unlike low-level assembly language.

In high level languages the words in English are converted into binary language
of different microprocessors with the help of a program called Interpreter or Complier.
The compiler or interpreter accepts English like statements as the input called Source
code. The source codes are translated into machine language compatible with the
microprocessor being used in the machine. The translation in the machine language from
the source code is called the object code. Figure 1.4 shows the block diagram for
translation of high level language program into machine code. Each microprocessor
needs its own compiler or an interpreter for each high level language.

 16

Fig. 1.4

The difference between a compiler and an interpreter is that the compiler reads
the entire program first and then generates the object code; where as the interpreter reads
one instruction at a time and produces its object code which is executed at the same time
before reading the next instruction. The high level programming language developed so
far may be categorized into third, fourth and fifth generation programming languages
whose brief discussion is given below.

Third Generation Programming Language

A third-generation programming language (3GL) is a refinement of a second-
generation programming language. Whereas a second generation language is more aimed
to fix logical structure to the language, a third generation language aims to refine the
usability of the language in such a way to make it more user friendly. A third generation
language improves over a second generation language by having more refinement on the
usability of the language itself from the perspective of the user.

Languages like ALGOL, COBOL, FORTRAN IV etc. are examples of this
generation and were considered as high level languages. Most of these languages had
compilers and the advantage of this was speed. Independence was another factor as these
languages were machine independent and could run on different machines. FORTRAN
(FORmula TRANslating) and COBOL (COmputer Business Oriented Language) were
the first high-level programming languages to make an impact on the field of computer
science. Along with assembly language, these two high-level languages have influenced
the development of many modern programming languages, including Java, C++, and
BASIC.

FORTRAN is well suited for math, science, and engineering programs because of
its ability to perform numeric computations. The language was developed in New York
by IBM's John Backus. FORTRAN was known as user’s friendly, because it was easy to
learn in a short period of time and required no previous computer knowledge. It
eliminated the need for engineers, scientists, and other users to rely on assembly
programmers in order to communicate with computers. Although FORTRAN is often
referred to as a language of the past, computer science students were still taught the
language in the early 2000s for historical reasons, and because FORTRAN code still
exists in some applications.

 17

COBOL was another high level and third generation programming language well
suited for creating business applications. COBOL's strength is in processing data, and in
its simplicity.

Other languages like BASIC, C, C++, C#, Pascal, and Java are also third-
generation languages.

Fourth-Generation Programming Language

A fourth-generation programming languages (4GL) (1970s-1990) are the
programming language designed with a specific purpose in mind, such as the
development of commercial business software. In the evolution of computing, the fourth
generation language followed the third generation language in an upward trend toward
higher abstraction and statement power. The fourth generation language was followed by
efforts to define and use a fifth generation language (5GL). Basically the fourth
generation languages are languages that consist of statements similar to statements in a
human language. Fourth generation languages are commonly used in database
programming and scripts. The commonly used fourth generation languages are FoxPro ,
SQL , MATLAB etc.

Fifth-Generation Programming Language

A fifth-generation programming language (5GL) is a programming language
based around solving problems using constraints given to the program, rather than using
an algorithm written by a programmer. Most constraint-based and logic programming
languages and some declarative languages are fifth-generation languages.

While fourth-generation programming languages are designed to build specific
programs, fifth-generation languages are designed to make the computer solve a given
problem without the programmer. This way, the programmer only needs to worry about
what problems need to be solved and what conditions need to be met, without worrying
about how to implement a routine or algorithm to solve them. Fifth-generation languages
are used mainly in artificial intelligence research. Prolog, OPS5, Visual Basic, and
Mercury etc. are examples of fifth-generation languages.

Problems

1.1 Draw the block diagram of a general computer and discuss in detail the five
blocks of a digital computer.

1.2 Discuss History and Evolution of Microprocessor.
1.3 What is microprocessor? What is the difference between a microprocessor and a

microcomputer?
1.4 What is the difference between the 4-bit microprocessor and 8-bit

microprocessor?
1.5 Name the main 8-bit microprocessors. Give the brief description of 8-bit

microprocessor 8080A.

 18

1.6 Discuss basic microprocessor system with the help of block diagram.
1.7 What are low level computer programming languages? Discuss them.
1.8 Discuss first generation computer programming languages.
1.9 Discuss second generation computer programming languages.
1.10 Write short note on high level computer programming languages.
1.11 What is the difference between assembly language and machine language?
1.12 Mention the brief description of Assembly Language. What are the advantages of

assembler?

2
SAP – I

For the beginners it is very difficult to understand the operation of a digital

computer as it contains large details. To understand the step by step operation of a digital
computer, the concept of Simple as Possible (SAP) computer has been introduced.
Simple as possible computer, a conceptual computer will be discussed in three stages
namely SAP – I, SAP – II and SAP – III computers. All the necessary details for the
operation of digital computers will be discussed in three stages. After the study of these
three stages of SAP computers, we will be in a position to understand clearly the
fundamentals of microprocessor 8085 including the architecture, programming and
interfacing devices. In this chapter the organization, programming and circuits of SAP – I
computer will be discussed; the succeeding chapters will have the details of other stages
of SAP computers.
2.1 ARCHITECTURE OF SAP - I

SAP – I, a conceptual computer is an 8-bit computer, as it can process the data of
8-bits. Further it is a simple computer and is considered for the basic understanding of the
operation of digital computers, so it is assumed that it can store only 16 words (each word
being 8 bit long). The length of the memory address register will of 4 bits since 1624 =
(16 is the total capacity of the memory unit). The address of 16 memory locations of
memory address register (MAR) will be 0000 to 1111 i.e.

Memory locations Address Memory locations Address
(in Hexadecimal) (in Hexadecimal)

 0 H 0000 8 H 1000
 1 H 0001 9 H 1001
 2 H 0010 A H 1010
 3 H 0011 B H 1011
 4 H 0100 C H 1100
 5 H 0101 D H 1101
 6 H 0110 E H 1110
 7 H 0111 F H 1111

The basic architecture of this computer is shown in figure 2.1. It contains an 8-bit
W-Bus (Wire Bus), which is used for data transfer to various 8-bit registers. A Bus is a
group of conducting wires. In this figure, all register outputs connected to W-Bus are
three-state which allows ordinary transfer of data. Remaining other register outputs
continuously drive the boxes they are connected to.

A brief discussion of each block is given below:

 20

Program Counter
First block of the SAP –I computers is the Program Counter (PC). It is basically

the part of the control unit, its function is to send to the memory the address of the next
instruction to be fetched and executed. Program counter is also called as the pointer as it
is like someone pointing a finger at a list of instructions, saying do this first and do this
next and so on.
 In the beginning, program and data is stored in the memory through the input unit.
A 4-bit binary address (0000 to 1111) is sufficient to address a word in the memory. The
first instruction of the program is stored in the memory location 0000, second instruction
at 0001 location, and the third instruction at 0010 location and so on. When the computer
starts executing the program, the program counter is reset. The program counter is then
incremented by one to get the next address of the memory location. After the first
instruction is fetched and executed, the PC sends address 0001 to memory. Again the PC
is incremented by one. After execution of second instruction, PC sends the next address
to memory and so on.

Fig. 2.1

Input and MAR
The second block of SAP –I computer is Input and Memory Address Register

(MAR). It includes 4 bit address register and 8 bit data register. These registers are
basically the parts of input unit. The input and MAR sends 4 bit address and 8 bit data to
memory unit, this unit helps in storing the instructions and data to the memory, before the
computer run starts. This unit includes a matrix of switches (micro-switches) for address

 21

and data. In this SAP-I computer, the switch matrix allows to send 4 address bits and 8
data bits to memory. The relevant switch is opened or closed to program the memory.
This can be done by providing switches on the front panel of the computer.
 The memory address register is also the part of SAP-I memory. When SAP-I
computer starts executing the program, the address in the PC is latched into the MAR.
The MAR will then send this address to RAM for the read operation.
Memory Unit

It is 16x8 static TTL RAM (Random Access Memory) i.e. it is capable of storing
16 words (total capacity is only of 16 words) and each word is of 8 bit long. It stores the
program and data before the execution of program; and during the execution it sends the
stored instruction and data to the W-bus for further transfer to other registers as soon as
address is received by it from MAR.
Instruction Register

The instruction register of SAP-I computer is the part of control unit. As already
discussed during the execution of program, the content of addressed memory location is
placed on the W-Bus. At the same time, during the next positive edge of the clock pulse
this instruction (content of memory location) is loaded into the Instruction Register. The
instruction register now splits the content of the instruction (8-bit) into two nibbles (one
nibble is of 4-bit long). Instruction register sends the upper nibble directly to
Controller/Sequencer, the lower nibble is, however, placed by the Instruction register to
W-Bus for the read operation whenever needed.
Controller Sequencer
 The block controller sequencer is basically control unit. This is a key unit for the
automatic operation of this SAP-I computer. It generates a control word of 12 bits as
given below:

 EMPP CLECCON = AA11 ELEL OBUU LLES

 The symbolic notations of the control signal (CON) used in the computer are
given in table 2.1.

 Table 2.1

Notation Interpretation

PC PC is incremented, when PC is high.

PE Enable PC, when PE is high.

ML Loads MAR from W-Bus, when ML is low.

EC Loads RAM, when EC is low.

1L Loads instruction register, when it is low.

1E Enable instruction register, when it is low.

 22

AL Loads the accumulator, when it is low.

AE Enable the accumulator, when it is high.

US Enables subtraction, when if is high and enables addition when it
is low.

UE Enable Adder/Subtrator to send the answer to W-Bus, when it is
high.

BL Loads the register B, when it is low.

OL Loads the output register, when it is low.

Accumulator
 The accumulator or register A is an 8-bit register and it is also called the buffer

register. When AL is low, the data from the W-Bus is loaded to the accumulator at the
positive edge of the clock pulse. This data also directly goes to the Adder/Subtractor. The
answer of Adder/Subtractor may also be loaded to the accumulator via W-Bus. The
answer or the data stored in Accumulator will go to W-Bus when AE is high.
Adder-Subtractor

The adder-Subtractor is the part of Arithmetic and Logical Unit (ALU) of the
computer. This block can add the content of B-register to accumulator content when US

is low. Similarly, this block can subtract the content of B-register from the accumulator
content when US is high. The answer of addition or subtraction may be loaded to W-Bus

when UE is high. The subtraction in the block adder/subtrator is done using 2’s

complement method.
Register B

The register B is the part of Arithmetic and Logical Unit (ALU) of the computer.
It is another buffer register of 8 bit long. The content to be added to the accumulator or

subtracted from the accumulator, is loaded to B-register from W-Bus when BL is low.
Output Register O

The output register O is the part of the output unit of the SAP-I computer. At the
end of the execution of program the answer available at the accumulator may be

transferred to output register O, at the positive edge of the clock pulse and when OL is
low, this register is also called the output port.
Binary Display (BD)

The last block of SAP-I computer is Binary Display (BD), which is the part of
output unit. This display unit contains 8 LEDs (Light Emitting Diodes) connected to 8 bit
output port through 8 flip-flops. When the data or answer is available at the output port,
the same is transferred to LEDs indicating the answer is in binary form.
2.2 INSTRUCTION SET OF SAP-I COMPUTER

 23

The instruction set is a set of instructions that can be executed by the computer.
The computer programming is done using these instructions. Any problem to be solved
on the computer is to be written in the form of a program. The SAP-I computer has got
only five instructions as it is a very simple computer. These instructions are given in table
2.2. The instructions are written in abbreviated form or short form. These short forms of
the instructions are known as Mnemonics (Memory aids). In fact the instructions in short
form can easily be remembered by the programmers or users. Further, every instruction is
stored in computer in coded form known as Op Code (Operation Code). The Op codes for
the instructions of SAP-I computer given in table 2.2 are shown in binary form. From the
above discussion it is clear that mnemonics is the short form of instruction for the user’s
remembrance and op code is the coded form of the instruction in machine language.

Table 2.2
Mnemonic Op Code

(Binary)
Operation

LDA 0000 It loads the accumulator the content from addressed
location.

ADD 0001 It adds the content of the memory location to the
accumulator content.

SUB 0010 It subtracts the content of the memory location from
the accumulator content.

OUT 1110 It transfers the accumulator content to the output
port.

HLT 1111 It stops the computer for further execution.
LDA Instruction

The LDA instruction loads the content from the specified memory location to the
accumulator. There is always an operand with this instruction. The operand with the LDA
instruction is the address of the memory location whose content is to be transferred to the
accumulator.
 For example

LDA 9 H
will load the accumulator, the content from the memory location 9 H. The

alphabet H denotes hexadecimal number, as the op code for LDA is 0000 and binary
equivalent of 9H is 1001. The machine language for this instruction is
 0000 1001.
 It must be remembered that LDA 9 H is known as the assembly language of the
instruction and 0000 1001 (09H) is known as machine language of the instruction.
 If the memory location 9H has the content 0001 0010 (12 H), then after execution
of the instruction in SAP-I computer, it will load the content 0001 0010 to the
accumulator, i.e. 00010010A ← or H12A ←
ADD Instruction
 ADD instruction adds the content of memory location to the accumulator content.
The address of the memory location is the operand of this instruction.
 For example
 ADD E H
 adds the content of memory location E H (1110) to the accumulator content.

 24

 If before the execution of this instruction accumulator A is having data say
00010101, and 0000 0001 is already stored in memory location E H, then after execution
of he instruction ADD E H the accumulator is loaded with the data 0001 0110,
 as 0000 10101 + 0000 0001 = 0001 0110.
 i.e. 00010110A ← or H16A ←
SUB Instruction
 SUB instruction subtracts the content of the memory location from the
accumulator content. The operand for this instruction is the address of the memory
location.
 For example
 SUB C H
 subtracts the content of memory location C H (1100) from the accumulator
content.
 If before the execution of this instruction accumulator A is having the content say
0000 0011 and the content in memory location C H is 0000 0010, then after the execution
of this instruction, the accumulator A will have the answer as:
 0000 0011 – 0000 0010 = 0000 0001
 So 00000001A ← or H01A ←
OUT Instruction
 The SAP-I instructions LDA, ADD and SUB discussed above are the memory
reference instructions since the address of the memory location is the operand for these
instructions. OUT instruction is not the memory reference instruction, as this instruction
is itself complete and operand is not needed. The OUT instruction is used to transfer the
accumulator content (answer after processing) to the output port.
HLT Instruction

HLT instruction is also not memory reference instruction, as it is complete itself
and no operand is used with this instruction. HLT instruction stops further processing of
the computer. This instruction must be used as the last instruction of every program
otherwise meaningless answer will be obtained.
 The complete assembly and machine code (Binary and Hexadecimal) of all the
operations are shown in table 2.3.
 Table 2.3

Assembly Code Machine Code
Binary Hex

Operations

LDA 5H 0000 0101 05 H Loads the Acc., the content of
memory location 5 H.

ADD CH 0001 1100 1C H Adds the content of memory location
CH to Acc. content.

SUB BH 0010 1011 2B H Subtracts the content of memory
location BH from the Acc. content.

OUT 1110 xxxx Ex H Sends Acc. content to the output port.
HLT 1111 xxxx Fx H Stops the processing.

2.3 PROGRAMMING OF SAP-I COMPUTER
 Programming means set of instructions written by the user or programmer for
performing a particular task. These instructions are then fed to the computer to get the

 25

desired result. The program for the particular task is written by the programmer in
assembly language (in mnemonic form) and then fed to the computer in the consecutive
memory locations in the form of op codes (machine language) along with data. The
program written in mnemonics form or assembly language is also called Source Program
and the program written in machine language is known as Object Program. It will now be
illustrated in more detail by taking an example.

Suppose we wish to get the addition of three numbers (decimal) 2, 3 and 5. Let
these numbers are stored in three different memory locations 6, 7 and 8 respectively.
Following steps will be taken for its execution:

Step-I First number from the memory location 6 should be

transferred to the accumulator (LDA 6 H).
Step-II Second number from memory location 7 should be added

to the accumulator and sum of these two numbers should
remain in the accumulator (ADD 7 H).

Step-III Third number from memory location 8 should now be
added to the accumulator content and final sum should also
remain in the accumulator (ADD 8 H).

Step-IV Final answer (accumulator content) should be sent to the
output port for the display in binary form (OUT).

Step-V Stop the processing of the computer (HLT).

 The program is now fed in the memory locations starting at 0 H and data in the
memory locations starting at 6 H, as:
 Memory location Mnemonic

(in Hex)

0 H LDA 6 H

 1 H ADD 7 H
 2 H ADD 8 H
 3 H OUT
 4 H HLT
 5 H xx H
 6 H 02 H
 7 H 03 H
 8 H 05 H
 This program in machine language is given as:
 Memory location Op code

0000 0000 0110
 0001 0001 0111
 0010 0001 1000
 0011 1110 xxxx
 0100 1111 xxxx
 0101 xxxx xxxx

 0110 0000 0010

 26

 0111 0000 0011
 1000 0000 0101
 Note: x – sign represents any binary digit 0 or 1.
Example 2.1 Write an assembly language program that performs the following
operation in SAP-I computer.
 35467 −+−+
 Use memory locations 7H to BH for the data. Further convert this program in
machine language.

Solution. SAP-I assembly language program of the given problem is as given
below:
 Memory location Mnemonic

(in Hex)

0 H LDA 7 H
 1 H ADD 8 H
 2 H SUB 9 H
 3 H ADD A H
 4 H SUB B H
 5 H OUT
 6 H HLT
 7 H 07 H
 8 H 06 H
 9 H 04 H
 A H 05 H
 B H 03 H
 This program in machine language is given by:
 Memory location Op code
 0000 0000 0111
 0001 0001 1000
 0010 0010 1001
 0011 0001 1010
 0100 0010 1011
 0101 1110 xxxx
 0110 1111 xxxx
 0111 0000 0111
 1000 0000 0110
 1001 0000 0100
 1010 0000 0101
 1011 0000 0011
Example 2.2 Write an assembly language program to calculate the following
expression on SAP-I computer:
 WZY 32 −+
 The data Y, Z and W (as 6, 7 and 2) are stored in memory locations 8H to AH.
Solution.

 27

 SAP-I assembly language program of the given problem is as given below:
 Memory location Mnemonic

(in Hex)
 0 H LDA 8 H
 1 H ADD 9 H
 2 H ADD 9 H
 3 H SUB A H
 4 H SUB A H
 5 H SUB A H
 6 H OUT
 7 H HLT
 8 H 06 H
 9 H 05 H
 A H 02 H
Example 2.3 Write assembly program for SAP-I computer to solve the following
problem:
 33202217 −++ .
The numbers are given in decimal. Also give the machine language program.
Solution.
 First the decimal numbers are converted to Hexadecimal numbers. The
Hexadecimal equivalents of these numbers are given as:
 17 = 11 H
 22 = 16 H
 20 = 14 H
 33 = 21 H
 Let us assume that these numbers are stored in memory locations 7H to AH.
 Memory location Mnemonic

(in Hex)
 0 H LDA 7 H
 1 H ADD 8 H
 2 H ADD 9 H
 3 H SUB A H
 4 H OUT
 5 H HLT
 6 H x x H
 7 H 11 H
 8 H 16 H
 9 H 14 H
 A H 21 H
 The machine language program is given as follows:
 Memory location Op code
 0000 0000 0111
 0001 0001 1000
 0010 0001 1001
 0011 0010 1010
 0100 1110 xxxx

 28

 0101 1111 xxxx
 0110 xxxx xxxx
 0111 0001 0001
 1000 0001 0110
 1001 0001 0100
 1010 0010 0001
2.4 WORKING OF SAP-I COMPUTER
 For the working of SAP-I computer, instructions are fetched from RAM and then
executed one by one in a sequence till a Halt instruction is executed. The SAP-I computer
executes program starting from 0 H memory location. For this controller / sequencer unit
generates a CLK signal for all the register and CLR signal for the Program counter. As
soon as the computer starts executing the program, program counter receives a CLR
signal which resets the program counter. The program counter will send the address of 0
H memory location.
 In SAP-I computer the loading of a register takes place only when setup and hold
times of the clock pulse are satisfied. For this 50% duty cycle clock pulse is used and
positive edge occurs half way through each state. Waiting half a cycle before loading the
register satisfies setup time; waiting half a cycle after loading satisfies the hold time.
Secondly, the reason for waiting half a cycle before loading a register is that when enable
input of the sending register goes active, the content of the register suddenly dumped on
to register. Stray capacitance and lead inductance may, however, prevent the voltage
level immediately. In other words the transients on the W-Bus will be eliminated if the
clock has the wait time to die out the transients and valid data is transferred. The control
word generated by the controller sequencer unit does the automatic operation of the
computer. The execution of a program is carried out by fetching and execution operations
of the instructions.
 The instruction cycle for the execution of an instruction consists of the following
two cycles:
 (i) Fetch cycle fetches a word from memory
 (ii) Execution cycle executes the fetched instruction
 We will now discuss these cycles in detail.
2.4.1 Fetch Cycle
 The operation of fetch cycle is performed in three states namely:

(a) Address State
(b) Increment State
(c) Memory State

During the address state, the content of PC is transferred to MAR via W-Bus:

 PCMAR ←
 During the increment state, the PC gets incremented. The incremented content
will be sent to MAR when next fetch cycle occurs.
 1PCPC +←
 During the memory state, memory read operation is performed.
 PCMBusW ←−

 The control word generated by the controller sequencer for these three states is
given below:

 29

 EMPP CLEC AA11 ELEL OBUU LLES

T1 0 1 0 1 1 1 1 0 0 0 1 1 Address State
Only PE and ML are
active. Figure 2.2 shows
shaded boxes as active.

T2 1 0 1 1 1 1 1 0 0 0 1 1 Increment State
Only PC is active. Figure
2.3 shows shaded boxes
as active.

T3 0 0 1 0 0 1 1 0 0 0 1 1 Memory State
Only EC and 1L are
active. Figure 2.4 shows
shaded boxes as active.

 Fig. 2.2 Fig. 2.3

 Fig. 2.4

 30

Fig. 2.5(a)

 Fig. 2.5(b)

 The Controller-sequencer keeps a track of three different states of Fetch cycle and
generates control signals accordingly. A ring counter is used for this purpose.
 Consider a 6-bit synchronous ring counter as shown in figure 2.5(a). The output T
of the ring counter is given by:
 6TT = 5T 4T 3T 2T 1T

At the start of the computer run, 6-bit output of the ring counter at the successive
clock pulse is shown in figure 2.5(b).

The details of the same are given below:
 6T 5T 4T 3T 2T 1T

 1st clock pulse = 0 0 0 0 0 1
 2nd clock pulse = 0 0 0 0 1 0
 3rd clock pulse = 0 0 0 1 0 0
 4th clock pulse = 0 0 1 0 0 0

 31

 5th clock pulse = 0 1 0 0 0 0
 6th clock pulse = 1 0 0 0 0 0
 7th clock pulse = 0 0 0 0 0 1
 and so on.
 The different outputs are also called T-states or timing states. During first three
clock pulses the operation of fetch cycle occurs which are explained below:
 During T1 state of the timing signal, Controller-sequencer generates a signal so

that PE is high and ML is low which sends the content of PC (address of the instruction
stored in RAM) to W-Bus and at the positive edge of the clock pulse (midway of the

clock pulse) the content of the W-Bus are latched into MAR due to low ML – This state
is called Address State of the fetch cycle.
 During T2 state of the timing signal, controller sequencer generates a signal giving
high to PC . At the positive edge of the clock pulse (midway of the clock pulse), PC
advances the count by 1 – This state is called Increment State of the fetch cycle.
 During T3 stat, control signal generated by Controller-sequencer makes EC and

1L low. The addressed RAM word is transferred to W-Bus and at positive edge of CLK
(midway of clock) the data is transferred to W-Bus and then loaded to Instruction register
– This state is called Memory State of the fetch cycle.
 The next three states of clock pulse are called the execution cycle of SAP-I
instructions.
2.4.2 Execution Cycle

After the instruction is fetched and transferred to the Instruction Register (IR)
during the fetch cycle, the IR splits the instruction word (8-bit) into two nibbles. The
upper nibble goes directly to the controller-sequencer, where it is decoded and
accordingly the control word is generated to act as per the direction of the instruction.
The decoded output will be different for different instructions (LDA, ADD, SUB, OUT,
and HLT). So during the execution cycle (T4 to T6 of the clock pulse), the operation of
control signal will be different for different instructions. Now we will discuss these
operations for each cycle.
Execution Cycle of LDA Instruction:
 For the discussion of the operation LDA instruction, let us assume the instruction
is LDA 6 H = 0 0 0 0 0 1 1 0
In this instruction 0 0 0 0 is the op code of LDA and 6 H (0 1 1 0) is the address of the
location where the data is stored.
 During T3 state of CLK, 0000 0110 is loaded to Instruction Register (IR). The
upper nibble 0000 directly goes to controller-sequencer, where it is decoded. During T4,
T5 and T6 states for the execution of LDA instruction, the controller-sequencer will
generate the following control words in sequence:

 EMPP CLEC AA11 ELEL OBUU LLES

 T4 0 0 0 1 1 0 1 0 0 0 1 1 LNIBBLEIRMAR←

 T5 0 0 1 0 1 1 0 0 0 0 1 1)(MARMA ←
 T6 0 0 1 1 1 1 1 0 0 0 1 1 NO OPERATION

During T4 state of CLK, lower nibble already available at the W-Bus is loaded

into MAR since 1E and ML are active.

 32

During T5 state of CLK, EC and AL are active which loads the addressed content
from RAM to Accumulator. This was the function of LDA instruction.

During T6 state of CLK, no operation is performed as nothing was left for this
instruction to do.

T4 to T6 states of LDA instruction are shown in figure 2.6 (a to c) with active parts
as shaded boxes and figure 2.7 shows timing diagram for Fetch and execution cycle of
LDA instruction.

The control word generated for each T-state is called as Microinstruction. One of
the instructions in instruction set is known as Macroinstruction. The microinstruction for
T4, T5 and T6 states of LDA instruction is given below:

 States Microinstruction (12 Bit Control Word)

 T4 1A3 H 0001 1010 0011
 T5 2C3 H 0010 1100 0011
 T6 3E3 H 0011 1110 0011

 (a) (b)

(c)

Fig. 2.6

 33

Fig. 2.7
Execution Cycle of ADD Instruction:
 For the execution of ADD instruction following control signals in sequence
during T4, T5 and T6 states will be observed:

 EMPP CLEC AA11 ELEL OBUU LLES

 T4 0 0 0 1 1 0 1 0 0 0 1 1 LNIBBLEIRMAR ←

 T5 0 0 1 0 1 1 1 0 0 0 0 1 M(MAR)B ←
 T6 0 0 1 1 1 1 0 0 0 1 1 1 SUMA ←

During T4 state, the address part of ADD instruction moves to MAR as ML and

1E are active. The data from MAR is fetched and loaded into register B during T5 state as

EC and BL are active. The adder-subtractor adds the content of Accumulator and register
B as SU is inactive. During T6 state the answer (Sum) is loaded to accumulator, as EU and

AL are active.
T states of ADD instruction are shown in figures 2.8 (a to c) with active parts as

shaded boxes. The timing diagram of Fetch and ADD instruction is shown in figure 2.9.
The microinstruction for T4, T5 and T6 states of ADD instruction is given below:

 34

 States Microinstruction (12 Bit Control Word)
 T4 1A3 H 0001 1010 0011
 T5 2E1 H 0010 1110 0001
 T6 3C7 H 0011 1100 0111

 (a) (b)

(c)

Fig. 2.8

 35

Fig. 2.9

Execution Cycle of SUB Instruction:
 The third instruction of SAP-I instruction set is SUB-instruction. For the
execution of SUB instruction, following control signals in sequence will be observed
during T4, T5 and T6 states.

 EMPP CLEC AA11 ELEL OBUU LLES

 T4 0 0 0 1 1 0 1 0 0 0 1 1 LNIBBLEIRMAR ←

 T5 0 0 1 0 1 1 1 0 0 0 0 1 M(MAR)B ←
 T6 0 0 1 1 1 1 0 0 1 1 1 1 .DIFFA ←
 From the above sequence it is clear that SUB instruction follow the same
sequence as ADD instruction except that during T5 state SU is high.

T states (T4 to T6) of SUB instruction are shown in figures 2.10 (a to c) with
active parts as shaded boxes. The timing diagram of Fetch and SUB instruction is shown
in figure 2.11.

The microinstruction for T4, T5 and T6 states of SUB instruction is given below:

 36

 States Microinstruction (12 Bit Control Word)
 T4 1A3 H 0001 1010 0011
 T5 2E1 H 0010 1110 0001
 T6 3CF H 0011 1100 1111

 (a) (b)

(c)

Fig. 2.10

 37

Fig. 2.11

Execution Cycle of OUT Instruction:
 For the execution of this instruction, following control signals in sequence will be
observed during T4, T5 and T6 states of execution cycle.

 EMPP CLEC AA11 ELEL OBUU LLES

 T4 0 0 1 1 1 1 1 1 0 0 1 0
 T5 0 0 1 1 1 1 1 0 0 0 1 1
 T6 0 0 1 1 1 1 1 0 0 0 1 1

 During T4 state, EA and OL are active due to which at the positive edge of clock
pulse accumulator content is loaded to the output register. High EA send the accumulator

data to W-Bus and low OL loads the data from W-Bus to output register. The work of out
instruction is complete. So no-operation is performed during T5 and T6 state i.e. all the
signals of the control word are inactive.

T states of OUT instruction are shown in figures 2.12 (a to c) with active parts as
shaded boxes. The timing diagram of Fetch and OUT instruction is shown in figure 2.13.

 38

 The microinstruction for T4, T5 and T6 states of OUT instruction is given
below:

 States Microinstruction (12 Bit Control)

 T4 3F2 H 0011 1111 0010
 T5 3E3 H 0011 1110 0011
 T6 3E3 H 0011 1110 0011

 (a) (b)

(c)

Fig. 2.12

 39

Fig. 2.13

Execution Cycle of HLT Instruction:
 HLT instruction does not require any T-cycle for its execution. Thus during T4, T5
and T6 state all the signals of the control word are inactive i.e. no-operation is performed
during these states.

 EMPP CLEC AA11 ELEL OBUU LLES

 T4 0 0 1 1 1 1 1 0 0 0 1 1
 T5 0 0 1 1 1 1 1 0 0 0 1 1
 T6 0 0 1 1 1 1 1 0 0 0 1 1

The microinstruction for T4, T5 and T6 states of HLT instruction is given below:
 States Microinstruction (12 Bit Control Word)

 T4 3E3 H 0011 1110 0011
 T5 3E3 H 0011 1110 0011
 T6 3E3 H 0011 1110 0011
Example 2.4 What are Microinstructions for:
 (i) LDA instruction
 (ii) ADD instruction

Solution. (i) During T4 state of LDA instruction ML and 1E are active.

 During T5 state of LDA instruction EC and AL are active
and During T6 state of LDA instruction None is active.
So Microinstructions for LDA are

 40

 For T4 1A3 H
 T5 2C3 H
 T6 3E3 H
(ii) Similarly, Microinstruction for ADD instruction are
 For T4 1A3 H
 T5 2C3 H
 T6 3E7 H
2.5 HARDWARE DESIGN OF SAP-I COMPUTER

In this section we shall discuss the hardware details of the following blocks of
SAP-I computer:

Program Counter
Memory Unit
Instruction Register
Controller-Sequencer
Accumulator
Adder-Sutractor
B-Register
Output Register and Binary Display

2.5.1 Design of Program Counter
 The program counter (PC) is designed using four J-K flip-flops. The circuit
diagram of program counter is shown in figure 2.14. From this diagram it can well be

understood that during the start of computer run a low CLR signal resets the program
counter to 0 0 0 0. During T1 state of fetch cycle, a high EP sends the address to the W-
Bus. During T2 state, high CP increments the Program counter, at the midway through T2.
the program counter is, however, inactive during T3 through T6 states.

Fig. 2.14

2.5.2 Memory Unit

 41

Figure 2.15 shows the circuit diagram of memory unit, which consists of Input &
MAR and RAM. In this figure IC1 and IC2 form Input & MAR; IC3 and IC4 form
read/write memory. IC1 is a 4-bit buffer register. It is a three state output register which
is configured here in a two state output, as it is not to be connected to W-Bus. IC2 is
basically 2 to 1 nibble multiplexer.

When the switch S1 is connected to Run position, the address bits are directly
available at the output of IC2. If on the contrary S1 is at the Run position, the address bit
from the W-Bus will be available at the output of this IC2.

IC3 and IC4 are two 16X4 static RAM, which form the RAM of SAP-I. These
two IC’s are configured to form, 16X8 read/write memory. When switch S1 is at PROG
position, S2 is at write position, the data from D0 to D7 will be written into static RAM. If
S1 is at Run position, the data already stored in the memory will be available at the W-
Bus.

Fig. 2.15

2.5.3 Instruction Register

 42

IC1 and IC2 forms the Instruction Register. These are two four-bit buffer
registers. These buffer registers are three state registers. IC1 is configured as two state
output. The outputs of this IC are upper nibble I7 I6 I5 I4 which directly goes to controller-
sequencer where these are decoded. The outputs of IC2 are the lower nibble (operand of
the fetched instruction), which are directly connected to W-Bus. The logic circuit
diagram of the Instruction register is shown in figure 2.16.

 Fig. 2.16

2.5.4 Controller-Sequencer

The schematic block diagram of controller-sequencer is shown in figure 2.17. It
consists of a ring counter, instruction decoder and control matrix for the generation of 12-
bit control word. The instruction decoder is a simple decoder, which provides the outputs
LDA, ADD, Sub, OUT and HLT. In fact it is a 4-to-5 decoder.

 43

 Fig. 2.17

The required logic is shown in table 2.4.

 Table 2.4

I7 I6 I5 I4 OUTPUT
0 0 0 0
0 0 0 1
0 0 1 0
1 1 1 0
1 1 1 1

LDA
ADD
SUB
OUT
HLT

 The logic diagram for the Instruction decoder of SAP-I computer is shown in
figure 2.18, which is as per the table 2.4.

 44

 Fig. 2.18
 The synchronous counter has already been discussed. This ring counter gives 6-bit
output (T1 to T6) at the successive clock pulse.
 For the generation of 12-bit control signal, the twelve outputs may be obtained
from the logic expressions given below:
 2P TC =

 1P TE =

 SUB.TADD.TLDA.TT 4441 +++=ML

 SUB.TADD.TLDA.TT 5553 +++=EC

 31 TL =

 SUB.TADD.TLDA.TE 4441 ++=

 SUB.TADD.TLDA.TL 665A ++=

 OUT.TE 4A =

 SUB.TS 6U =

SUB.TADD.TE 66U +=

SUB.TADD.TL 55B +=

OUT.TL 4O =
The logic circuit diagram of the above expressions is shown in figure 2.19.

 45

Fig. 2.19

2.5.5 Accumulator

 Figure 2.20 shows the logic diagram of 8-bit buffer register known as
accumulator which is designed using two ICs’ IC1 and IC2 (both 74LS173). These ICs
are configured as two-state output. The outputs of both the two ICs directly go to Adder-
Subtractor. Three state switches send the content of accumulator to W-Bus when the
signal EA is high.

 46

Fig. 2.20

2.5.6 Adder-Subtractor

Figure 2.21 shows the logic circuit used for Adder-subtractor of SAP-I computer.
It basically consists of two 2’s complement adder/subtractor ICs (7483). The data from
the accumulator directly goes to the Adder-subtractor as shown in figure 2. . The outputs
of B-register are also connected to these two ICs through eight exclusive-OR gates. The
one terminal each of the eight exclusive-OR gates is being used as control Input (SU).
When SU is low the content of B-register is directly loaded to Adder/Subtractor i.e. it will
act as simple adder. If on the other hand SU is high, 1’s complement of B-register is being
added to adder/subtractor ICs. Logic 1 is also added to LSB to form its as 2’s
complement (it therefore works as 2’s complement subtractor). These two

 47

adder/subtractor ICs give the 8-bit addition or subtraction. The 8-bit three state switches
load the answer (sum or difference) to W-bus.

 Fig. 2.21

2.5.7 B-Register
 Similar to Accumulator, B-register is also designed using the Buffer register ICs
74LS173. The logic circuit diagram of this register is shown in figure 2.22. These two

ICs are configured as two state register. When BL is low, the data from the W-Bus is
loaded to B-register and then transferred to Adder/Subtractor.

 48

 Fig. 2.22
2.5.8 Output Register

Output register is also formed by two state Buffer register using 74LS173 ICs.
The output register with Binary display unit of SAP-I computer is shown in figure 2.23.

When OL is low, the data from the W-Bus will be loaded to output register. The output
terminals of output register are connected to 8 LEDs, which will glow as per the data
available at the output register.

 49

Fig.2.23

Problems

2.1 Draw the block diagram of SAP-I computer. Discuss the function of each block.
2.2 What is the function of Controller/Sequencer in SAP-I computer? How a control

word is generate in SAP-I computer?
2.3 Draw the logic circuit diagram of Program counter and discuss its function.
2.4 Explain with the help of timing diagram the fetch and execution cycle of LDA-

instruction.
2.5 Explain with the help of timing diagram the fetch and execution cycle of ADD-

instruction.
2.6 Explain with the help of timing diagram the fetch and execution cycle of SUB-

instruction.
2.7 Explain with the help of timing diagram the fetch and execution cycle of OUT-

instruction.
2.8 Explain with the help of timing diagram the fetch and execution cycle of HLT-

instruction. Further explain what will happen if HLT instruction is not given at the
end of the program?

2.9 Differentiate between:
(i) Micro-instruction and Macro-instruction

 50

(ii) Assembly language and machine language
(iii) Source program and object program

2.10 Explain the instruction set of SAP-I computer. What is the size of MAR of the
SAP-computer?

2.11 Why the positive clock edge occurs half way through each T-state in SAP-I
computer?

2.12 What is the role of instruction register in SAP-I computer? Draw the logic
diagram for Instruction register of SAP-I computer?

2.13 Write an assembly language program that perform the following operation in
SAP-I computer.

42538 −++−
Use memory locations 7H to BH for the data. Write also its program in machine
language.

2.14 Write an assembly language program for SAP-I computer that will display the
result of 239 −+ .

2.15 Write an assembly language program for SAP-I computer that will display the
result of 614237 +−+−+ .
Use AH to FH memory locations for starting the data.

2.16 Write an assembly language program for calculating the following expression
C2B3A −+ on SAP-I computer. The data A, B and C are stored in memory

locations 9 H to B H. Write also its machine language.
2.17 What are microinstructions for SUB and OUT instructions of SAP-I computer.

Express the answer in binary also.
2.18 The timing diagram for Fetch and Execution cycle of ADD instruction is shown

in figure 2.24. What are the microinstructions for Fetch and Execution cycle of
ADD instruction?

 51

 Fig. 2.24

 3
SAP – II

 In the preceding chapter of this book, the architecture, Instruction set and
Programming of a conceptual computer named SAP-I computer was discussed. In order
to understand the basic knowledge of a computer, it was the first step in the evolution
towards the modern computers. The further step in this direction is SAP-II computer. The
details of SAP-II computers will now be discussed.

3.1 ARCHITECTURE OF SAP-II COMPUTER
 The architecture of another conceptual computer named as SAP-II computer is
shown in figure 3.1. The SAP-II computer has more registers and other blocks, for giving
more flexibility in programming. The architectural details of the Simple as Possible
computer SAP-II are basically same as that of SAP-I, but SAP-II has more additional
features which are given below:

(1) It is an eight bit computer, as 8-bit data can be processed in this computer.
The SAP-I computer was also 8-bit computer.

(2) It has bidirectional BUS shown by double headed arrows, which indicate
that the data can move either way after having the proper control signal. In
SAP-I computer separate BUS is used for each way.

(3) The memory size of SAP-II computers is 64K (65536) words and each
word is of 8-bit long. The data may be loaded or retrieved from the
memory, through a buffer register known as Memory Data Register
(MDR) or Memory Buffer Register (MBR).
The address for the location is 16 bits as 1626553664 ==K .
The address will start from:
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
to
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The hexadecimal equivalent of the address is
 0 0 0 0 H to F F F F H.
However, memory size of SAP-I computers was only 16. As 24 = 16, so 4
address lines were used.

(4) The width of the W-BUS is 16, since it has to carry a 16 bit address. The
width of W-bus for SAP-I computer was only of 8-bits.

(5) The program counter of SAP-II computer is 16-bit wide as it has to send
the address of 16 bits to W-BUS.

(6) Memory Address Register (MAR) of SAP-II computer is of 16 bits as it
receives the address of 16-bits from the W-BUS.

 53

(7) The controller sequencer of SAP-II computer generates a control word of
bigger size than that of SAP-I computer; since it has to control more
registers and blocks of the computer. The control word of SAP-I
computers was of 12 bits.

 Fig. 3.1
(8) There are three registers in SAP-II computers namely Accumulator

(Register A), Register B and Register C. All these registers are 8-bit
registers. The registers B and C are general purpose registers. These
registers give more flexibility in moving the data from one register to
other register during the computer run. In SAP-I computer B-register was
available for holding the data being added to or subtracted from the

 54

accumulator. In SAP-II computers, there is a temporary register (T-
register) for this purpose.

(9) SAP-II computer has Arithmetic and Logical unit (ALU) which can
perform the arithmetic and logical operations on 8 bit data. Two flags
(Sign flag S and Zero flag Z) are available with ALU. The accumulator
content goes negative or zero during execution of some instructions. This
affects the sign and zero flags. Figure 3.2 shows the circuit used for setting
of flags of SAP-II computers.
It is clear from this figure that when accumulator content is zero all the
bits (A0 to A7) are zero and the output of NOR gate is one. This NOR gate
derives the AND gate (numbered 2), if the gating signal LF is high and the
flag will be updated. Similarly, if the accumulator content is negative,
most significant bit (A7) of the accumulator will be one which drives the
lower AND gate (numbered 3) and sign flag will be updated when LF is
high. The sign flag will be set if accumulator content is negative and reset
if positive. The zero flag will be set if accumulator content is zero and
reset if it is non zero.

 Fig. 3.2

(10) There are two input ports (Input Port-1 and Input Port-2) in SAP-II
computers as shown in figure 3.1. A hexadecimal keyboard encoder is
connected to Port 1. The instruction and data fed to the computer through
this input port 1. The encoder sends a READY signal to bit 0 of Input
Port-2. The data may also be accepted in serial form through the Input
Port-2.

(11) SAP-II computer has two Output Ports namely output port-1 and output
port-2. Through the output port-1, the processed data (answer from
accumulator) can be visualized on the hexadecimal display. The
accumulator content can also be sent to output port serially.

(12) Because of the availability of more registers and large size of memory,
SAP-II computer has an instruction set with 42 instructions. SAP-I
computer has only 5 instruction in its instruction set.

3.2 INSTRUCTION SET OF SAP-II COMPUTERS

 55

 As already discussed SAP-II computer has 42 instructions in its instruction set
which are listed in table 3.1. These instructions are divided into 5 different categories as:
 Memory Reference Instructions
 Register Instructions
 Jump and Call instructions
 Logical Instructions
 Miscellaneous Instructions
 Table 3.1
Category Instruction Op.

Code
Operation

Memory
Reference
instructions

LDA address 3A [] []addressMA ←

STA address 32 [] []AM address ←

MVI A, data 3E [] DataA ←
MVI B, data 06 [] DataB ←
MVI C, data 0E [] DataC ←

Register
Instructions

MOV A, B 78 [] []BA ←
MOV A, C 79 [] []CA ←
MOV B, A 47 [] []AB ←
MOV B, C 41 [] []CB ←
MOV C, A 4F [] []AC ←
MOV C, B 48 [] []BC ←

ADD B 80 [] [] []BAA +←
ADD C 81 [] [] []CAA +←
SUB B 90 [] [] []BAA −←
SUB C 91 [] [] []CAA −←
INR A 3C [] [] 1+← AA
INR B 04 [] [] 1+← BB
INR C 0C [] [] 1+← CC
DCR A 3D [] [] 1−← AA
DCR B 05 [] [] 1−← BB
DCR C 0D [] [] 1−← CC

Jump and
Call
instructions

JMP address C3 [] AddressPC ←
JM address FA [] AddressPC ← ; if acc.

content is negative.
JZ address CA [] AddressPC ← ; if acc.

content is zero.
JNZ address C2 [] AddressPC ← ; if acc.

content is not zero.
CALL address CD []PCStack← and

 56

[] AddressPC ←
RET C9 [] StackPC ←

Logical
instructions

CMA 2F AA ←
ANA B A0 BANDAA ..←
ANA C A1 CANDAA ..←
ORA B B0 BORAA ..←
ORA C B1 CORAA ..←
XRA B A8 BAA ⊕←
XRA C A9 CAA ⊕←

ANI, data E6 dataANDAA ..←
ORI, data F6 dataORAA ..←
XRI, data FE dataAA ⊕←

Miscellane
ous
instruction

NOP 00 No operation
IN Port DB [] []PortadressA ←

OUT Port D3 [] []AOutport ←
RAL 17 Rotate acc. left
RAR 1F Rotate acc. right
HLT 76 Stops Processing

 The operation to be performed by each instruction has been explained in table 3.1.
After going through these instructions, it will be possible to write complicated programs
in solving the different problems.
 The SAP-II computer has memory reference instruction like ‘STA address” which
allows to store the content of accumulator to the memory location whose address is given
with the instruction. For example if accumulator has the content =A 1 0 1 0 1 0 1 0
before execution of an instruction. Let the instruction is
 STA 2050 H
After execution of this instruction the memory location 2050 H will have the data
 1 0 1 0 1 0 1 0.
 i.e. 101010102050 =HM

 In register instructions, MOV C, B copies the content of B-register into C-register
)(BC ← .

 In Call instructions, the instruction ‘CALL address’ copies the present address of
program counter to Stack and the given address with the instruction is copied into
program counter. So whenever the next instruction is fetched, the program counter will
send this new address. This instruction helps in jumping from the normal routine of the
program to subroutine program. The instruction RET stands for return. This statement is
used at the end of subroutine program and its sends back to the original program as the
content of the stack is copied back to the program counter. In SAP-II computer there is,
however, no register for Stack. The last two memory locations FFFE H and FFFF H are
used for this purpose as shown in figure 3.3 i.e. these two locations are exclusively used
for saving the return address of the subroutine program.
 The SAP-II computer has the logical instructions such as ‘ANA reg’, ‘ORA reg’,
‘XRA reg’, ‘ANI data’, ‘ORI data’, ‘XRI data’ and ‘CMA’. The ‘ANA B’ instruction

 57

AND the contents of A register with the contents of B register bit by bit and the answer is
loaded into accumulator.
 In miscellaneous instructions, ‘IN port’ loads the data word from an input port to
the accumulator.

Fig. 3.3

 The RAL instruction rotates the accumulator left. This instruction will shift all
bits of accumulator content to the left and move the MSB into LSB position as illustrated
in figure 3.4.

Fig.3.4

Similarly, the RAR instruction rotates the accumulator right. This instruction will
shift all bits of accumulator content to the right and move the LSB into MSB position as
illustrated in figure 3.5.

 Fig. 3.5
3.3 MACHINE CYCLE AND INSTRUCTION CYCLE
 It has been discussed in the last chapter that the SAP-I computer takes 6-T states
to fetch and execute an instruction. These six states form a machine cycle. The number of
T-states needed to fetch and execute an instruction is called Instruction cycle. So in SAP-
I computer instruction cycle is machine cycle as shown in figure 3.6.
 The SAP-II computer has, however, more than one machine cycle to fetch and
execute an instruction. As shown in figure 3.7, first three T-states are used to fetch an

 58

instruction and other 9 T-states are used for the execution of an instruction. So in SAP-II
or other computers the instruction cycle may have two or more machine cycles. Table 3.2
shows the number of T-states used for the instruction cycle of each instruction.

Fig. 3.6

Fig. 3.7

 The instruction ‘STA address’ takes 13 T-states to fetch and execute this
instruction. If the system clock frequency is 3 MHz, then ‘STA address’ will take

 sec33.4sec
3

1
13 µµ =x

time to fetch and execute this instruction i.e. it is the time of instruction cycle of the
instruction ‘STA address’.
 Table 3.2

Instruction Addressing No of
T-states

Flags
affected

No of
bytes of
instr.

LDA address Direct 13 None 3
STA address Direct 13 None 3
MVI A, data Immediate 7 None 2
MVI B, data Immediate 7 None 2
MVI C, data Immediate 7 None 2

 59

MOV A, B Register 4 None 1
MOV A, C Register 4 None 1
MOV B, A Register 4 None 1
MOV B, C Register 4 None 1
MOV C, A Register 4 None 1
MOV C, B Register 4 None 1

ADD B Register 4 S, Z 1
ADD C Register 4 S, Z 1
SUB B Register 4 S, Z 1
SUB C Register 4 S, Z 1
INR A Register 4 S, Z 1
INR B Register 4 S, Z 1
INR C Register 4 S, Z 1
DCR A Register 4 S, Z 1
DCR B Register 4 S, Z 1
DCR C Register 4 S, Z 1

JMP address Immediate 10 None 3
JM address Immediate 10/7 None 3
JZ address Immediate 10/7 None 3

JNZ address Immediate 10/7 None 3
CALL address Immediate 18 None 3

RET Implied 10 None 1
CMA Implied 4 None 1

ANA B Register 4 S, Z 1
ANA C Register 4 S, Z 1
ORA B Register 4 S, Z 1
ORA C Register 4 S, Z 1
XRA B Register 4 S, Z 1
XRA C Register 4 S, Z 1

ANI, data Immediate 7 S, Z 2
ORI, data Immediate 7 S, Z 2
XRI, data Immediate 7 S, Z 2

NOP - 4 -- 1
IN Port Direct 10 None 2

OUT Port Direct 10 None 2
RAL Implied 4 None 1
RAR Implied 4 None 1
HLT - 5 -- 1

3.4 ADDRESSING MODES
 There are various techniques to specify the data for instruction. These techniques
are called addressing modes. SAP-II computer has the following addressing modes:

1. Direct Addressing
2. Register Addressing
3. Immediate Addressing
4. Implied Addressing

 60

Direct Addressing
 In this mode of addressing, the address of the operand is given in the instruction
itself.
 For example LDA 2100 H
 OUT 03 H etc.
Register Addressing
 In this mode of addressing, the operands are in registers.
 For example MOV A , B
 ADD C etc.
Immediate Addressing

In immediate addressing mode, the operand in specified in the instruction itself.
 For example MVI B, 08 H
 ANI 07 H etc.
Implied Addressing

There are certain instructions which operate on the contents of the accumulator.
Such instructions do not require the address of the operand, since the operand is implied
in the instruction itself. So this type of addressing mode is called as Implied Addressing.
 For example CMA
 RAL
 RAR etc.
 The addressing modes of all the instructions of SAP-II computers are given in
table 3.2.
3.5 INSTRUCTION TYPES
 The instruction set of SAP-II computer may be divided into three types. As
already seen, there are different ways for specifying the data for instructions, so the
machine codes of all instructions are not of same length. Following are the types of
instructions:

(i) One Byte Instruction
(ii) Two Byte Instruction
(iii) Three Byte Instruction

One Byte Instruction
 This type of instruction has only op code part of one byte and no operand is given.
The instruction length is only of one byte. It can be stored only in one memory location.
 For example MOV A, C
 ADD C
 CMA
 RAL
 RAR etc.
 If ‘MOV A, C’ instruction is to be stored in some location say 2000 H, then its op
code of one byte is to be fed in this memory location.
 i.e. 2000 H 79 H
 where 79 H is the op code of the instruction ‘MOV A, C’.
Two Byte Instruction

In a two byte instruction, first byte of the instruction is its op code and second
byte is the given data.

Such instruction is stored in two consecutive memory locations.

 61

 For example MVI A, 06 H
 OUT 03 H
 ANI 76 H etc.
 In order to store the instruction say ‘MVI A, 06 H’ in the memory locations of the
computer, we have to use two consecutive memory locations. In one memory location the
op code of MVI A is to be stored and in the second location the data 06H is to be stored.
This type of instruction to be stored in two locations say in 2101 H and 2102 H is given
below:
 2101H 3E H (op code of MVI A)
 2102H 06 H (given data)
Three Byte Instruction
 In a three byte instruction, first byte is used for its op code and second and third
bytes are used for 16 bit address. Such an instruction is stored in three consecutive
memory locations.
 For example LDA 2100 H
 STA 3000 H
 JMP 2500 H etc.
 In order to store the instruction say ‘LDA 2100 H’ three consecutive memory
locations are to be used. In the first memory location op code of the instruction is stored,
in second location lower byte of the address is to be stored and in the third byte upper
byte of the address is to be stored. This instruction loaded in three consecutive memory
location 2000H, 2001H and 2002H is given below:
 2000H 3A H (op code of LDA)
 2001H 00 H (Lower byte of address 2100 H)
 2002H 21 H (Upper byte of address 2100 H)
 The type of instructions of all the 42 instructions of SAP-II computer is also given
in table 3.2.

3.6 FLAGS
 As already discussed, there are two flags associated with the accumulator of SAP-
II computer, sign flag (S) and Zero flag (Z). These flags may be set or reset during certain
instructions. If the accumulator content is negative after execution of certain instruction
the sign flag is set otherwise it is reset. Similarly, if the accumulator content is zero after
the operation of certain instruction the zero flag is set otherwise reset. These instructions
which affect the flags are listed in table 3.3.

 Table 3.3

Instruction Flags affected
ADD S, Z
SUB S, Z
INR S, Z
DCR S, Z
ANA S, Z
ORA S, Z
ANI S, Z
ORI S, Z
XRI S, Z

 62

 For example in ADD instruction say ADD B, the contents of B register gets added
with the accumulator content and after addition the result is stored in accumulator. If the
result is zero then zero flag is set otherwise reset. Similarly, if the result is negative the
sign flag is set otherwise reset.
 In INR or DCR instructions both sign and zero flags are affected. For example if
there is an instruction INR B, the content of B register is incremented by sending the
contents to accumulator and adds 1 to it. The result is then sent back to B register. If the
accumulator goes negative while INR instruction is executed, the sign flag is set; and if
the accumulator content is zero then the zero flag is set.

3.7 ASSEMBLY LANGUAGE PROGRAMMING
The programming of the problem is generally written in assembly language. The

assembly language is written in mnemonics. The mnemonics are the initials or short form
of the English word of the operation to be performed by the instruction. Assembly
language statements are written in standard format as given below:

Label Mnemonic Operand Comment

Label A label is a symbol or group of symbols used to represent an
address of the location which is not specifically known at the time
of program is written. The label can be one to six characters, the
first character of which must be a letter. Following are the
acceptable labels.

 NEXT, BACK, DELAY, A2 etc.

Mnemonic Short form of the operation to be performed.

Operand Operand is the data on which the operation is performed. It can be

a data, memory address, register or port address.

Comment The comment statement is started with the semicolon. It gives the

idea of the program to the user. The comments are not the part of
the machine language program.

 The program written in assembly language can be converted to machine language
by hand. For writing the program in machine language, the starting address, where the
program is to be stored should be known. Now the op code of the instruction is to be
written in first location (starting address) and in the consecutive memory locations data
/address of the operand is written. While storing the address in the memory locations,
lower byte of he address is stored first then the upper byte as discussed above.

Example 3.1 Write assembly language program using the instructions of SAP-II
computer of the following statement. Also write the program in machine language.
 Load the contents of memory locations 2100 H and 2101 H in B-register and C-
register respectively. The content of memory locations 2100 H and 2101H are 16 H and
19 H respectively.
Solution.

Label Mnemonic Operand Comment

 63

 LDA 2100H ; Loads the content of 2100H into
accumulator.

 MOV B, A ; moves the content of accumulator
to B-register (AB ←).

 LDA 2101H ; Loads the content of 2100H into
accumulator.

 MOV C, A ; moves the content of accumulator
to C-register (AC ←).

 HLT ; Stop processing.
 The assembly language program may be converted to machine language by
writing the op codes of the instructions as given below. Let the starting address of the
program is 2000H.

 Memory Content
 Address

 2000 H 3A H LDA 2100 H
 2001 H 00 H
 2002 H 21 H
 2003 H 47 H MOV B, A
 2004 H 3A H LDA 2101 H
 2005 H 01 H

 2006 H 21 H
 2007 H 4F H MOV C, A
 2008 H 76 H HLT

 2101 H 16 H Data
 2102 H 19 H Data

Example 3.2 Write an assembly language program to find the 2’s complement of a
hexadecimal number. The hexadecimal number 6A H is stored in memory location 2100H
and the answer is to be stored in 2101 H. Use SAP-II instructions to program it.
Solution.

Label Mnemonic Operand Comment
 LDA 2100 H ; Loads the content of 2100 H into

accumulator.
 CMA ; Complements the accumulator

content (1’s complement).
 INR A ; 1 is added to the accumulator

content to get the 2’s complement.
 STA 2101 H ; Loads the accumulator contents

into memory location 2101 H.
 HLT ; Stop processing.

Example 3.3 Write an assembly language program using SAP-II instructions to add two
numbers (decimal) 38 and 64, then subtract decimal number 3 from the sum. The final
answer is to be stored in memory location 2100 H.
Solution. First of all decimal numbers 38 and 64 should be converted to hexadecimal
numbers, as it works in hexadecimal.
 Decimal number 38 = 26 H

 64

 Decimal number 64 = 40 H
Label Mnemonic Operand Comment

 MVI A, 26 H ; Loads the first number to
accumulator.

 MVI B, 40 H ; Loads the second number to B-
register.

 MVI C, 03 H ; Loads the third number to C-
register.

 ADD B ; Adds the contents of B-register
with the contents of accumulator
and the answer is stored in A.

 SUB C ; Content of C gets subtracted from
accumulator and difference is
stored in A.

 STA 2100 H ; Answer is stored in 2100 H
location.

 HLT ; Stop processing.
Example 3.4 Write a program in assembly language for SAP-II computer to mask off the
least significant 4 bits of a given hexadecimal number. The answer should be stored in
memory location 2200 H. Let the given number is B3 H.
Solution. The binary equivalent of B3 H is 1011 0011. The masking of the 4 least
significant bits 0011 means to make 0011 to 0000. However, the four most significant
bits should not be changed.
 This can be done if the given number is ANDed with F0 H (1111 0000). In
doing so when 4 most significant bits are ANDed with 1111 no change will be there, but
4 least significant bits will be 0000 as required. The assembly language program for this
will be as follows:

Label Mnemonic Operand Comment
 MVI A, B3 H ; Loads the number B3H to

accumulator.
 ANI F0 H ; ANDs the accumulator with F0H

and answer is loaded to
accumulator.

 STA 2200 H ; Answer is stored in 2200 H
location.

 HLT ; Stop processing.
Example 3.5 Write a program in assembly language for SAP-II computer to load a
number 79 H in B-register and mask off all bits except 2A bit. The result is to be
transferred to C-register.
Solution. To mask off the third LSB (2A bit) the ANDing of the given content will be
with FBH (11111011). The program will be as given below:

Label Mnemonic Operand Comment
 MVI B, 79 H ; Loads the number 79 H to

accumulator.
 MOV A, B ; Moves the content of B-register

to accumulator.

 65

 ANI FB H ; ANDs the accumulator with FB H
and answer is loaded to
accumulator.

 MOV C, A ; Answer is loaded to C-register.
. HLT ; Stop processing.
Example 3.6 Write a program in assembly language for SAP-II computer to interchange
(swap) the contents of two memory locations 2100 H and 2101 H.
Solution. The program is given below which is self explanatory.

Label Mnemonic Operand Comment
 LDA 2100H ; Loads the content of 2100H into

accumulator.
 MOV B, A ; Moves the content of Acc to B-

register.
 LDA 2101 H ; Loads the content of 2101H into

accumulator.
 STA 2100 H ; Loads the acc. content to 2100 H

location.
 MOV A, B ; Moves the content of B-register to

Acc.
 STA 2101 H ; Loads the acc. content to 2101 H

location.
 HLT ; Stop processing.

Example 3.7 Write a program in assembly language for SAP-II computer to multiply two
decimal numbers 23 and 9 and store the answer in some memory location. Also write this
program in machine language.
Solution. Hexadecimal equivalent of decimal number 23 is 17 H.
 The multiplication of these two numbers may be obtained by adding 23 (17 H) by
9 times in the accumulator which should be 00 H at the beginning. So the program of this
problem may be as given below:

Label Mnemonic Operand Comment
 MVI A, 00 H ; Loads the acc. 00 H. [] HA 00← .

 MVI B, 17 H ; Loads B-register with 17H
[] HB 17← .

 MVI C, 09 H ; Loads C-register with 09H
[] HC 09← .

AGAIN ADD B ; Adds the content of B-register to
acc.

 DCR C ; Decrements C-register.
 JZ END ; Checks for zero; if zero jump to

END.
 JMP AGAIN ; Repeats the addition.

END STA 2100 ; Stores the answer to memory
location 2100 H.

 HLT ; Stop processing.
 The program can be written in machine language stating at address 2000 H as
given below:

 66

 Memory Content
 Address

 2000 H 3E H MVI A, 00 H
 2001 H 00 H
 2002 H 06 H MVI B, 17 H
 2003 H 17 H
 2004 H 0E H MVI C, 09 H
 2005 H 09 H
 2006 H 80 H ADD B
 2007 H 0D H DCR C
 2008 H CA H JZ 200E H
 2009 H 0E H
 200A H 20 H
 200B H C3 H JMP 2006 H
 200C H 06 H
 200D H 20 H
 200E H 32 H STA 2100 H
 200F H 00 H
 2010 H 21 H
 2011 H 76 H

 Alternative method of writing this program using JNZ is as given below:
Label Mnemonic Operand Comment
 MVI A, 00 H ; Loads the acc. 00 H. [] HA 00← .

 MVI B, 17 H ; Loads B-register with 17 H
[] HB 17← .

 MVI C, 09 H ; Loads C-register with 09 H
[] HC 09← .

AGAIN ADD B ; Adds the content of B-register to
acc.

 DCR C ; Decrements C-register.
 JNZ AGAIN ; Repeats the addition if the content

of C-register is not zero.
 STA 2100 H ; Stores the answer to memory

location 2100 H.
 HLT ; Stop processing.
 This program can also be written by using subroutine program as follows:
Main Program

Label Mnemonic Operand Comment
 MVI A, 00 H ; Loads the acc. 00 H. [] HA 00← .
 MVI B, 17 H ; Loads B-register with 17 H

[] HB 17← .
 MVI C, 09 H ; Loads C-register with 09H

[] HC 09← .
 CALL MUL ; Calls subroutine program for

multiplication.

 67

 STA 2100 H ; Stores the answer to memory
location 2100 H.

 HLT ; Stop processing.
Subroutine Program

Label Mnemonic Operand Comment
MUL ADD B ; Adds the content of B-register to

acc.
 DCR C ;Decrements C-register.

 JNZ MUL ; Repeats the addition if the content
of C-register is not zero.

 RET ; Returns to main program.
3.8 DELAY CALCULATIONS
 Through programming time delay can be introduced, which is very useful in
various applications such as digital clocks, traffic controls, digital process control and
other data transfer controls. Time delay can be introduced by loading the registers with
some desired number and then decremented through the loops to zero value. The delay
introduced in the system will depend on the clock period of the system and the number of
times the instructions are executed inside the loop.
 To generate very small delay only one register can be used. Consider a subroutine
program given below in which C-register is loaded with 10 H (decimal number 16). It is
decremented in a loop to make it zero. Figure 3.8 shows the flow chart for the same.

Label Mnemonic Operand No. of T-states
 MVI C, 10 H 7

 LOOP DCR C 4
 JNZ LOOP 10/7
 RET 10

 In this program the instruction MVI C, 10 H is executed only once and it takes 7
T-states to execute.
 The instruction DCR C is executed 16 times and thus takes 644x16 = T-states,
since DCR instruction takes 4 T-states for its execution.
 For the execution of JNZ instruction, it will go to loop 15 times, as the content of
C-register will not be zero. So 15010x15 = T-states will be used in its calculation (till
the content of C-register is not zero). When the contents of C-register becomes zero, it
will jump to loop and it will take 7 T-states. For the execution of RET statement it will
take 10 T-states.
 Thus total number of T-states taken for the execution of this program will be
given by:

 Mnemonic T-states
 MVI C, 10 H 71x7 =

 DCR C 6416x4 =
 JNZ 1577x115x10 =+
 RET 1010x1 =
 Total 238 T-states

 68

 Fig. 3.8

 Total 238 T-states are used for the execution of this program. If the system

frequency is 2 MHz, the time taken by one T-state is secµ5.0sec
102

1
6

=
x

.

 The total time delay introduced in the execution of this program is:
 Time delay secµ5.0238x=
 secµ119=
 119.0= msec
 Maximum delay with this register C may be obtained by loading the number FF H
(decimal number 255) in C-register. The maximum delay thus is:

 MVI C, FF H 71x7 =
 DCR C 1020255x4 =

 JNZ 25477x1254x10 =+
 RET 1010x1 =

 Total 3584 T-states
 Time delay secµ5.03584x=
 = 792.1 msec
 Total delay introduced by the computer using only one register may be given in
the following general form as:
 []xxxNNxTDelay 107110)1(471 ++−++= time of one T-state.

 where N is the decimal number given with the register.
 []xN 1414 += time of one T-state.

 []xN 114 += time of one T-state.

 69

 As discussed earlier the total time delay introduced by a register is 1.79 millisec if
system clock frequency is 2 MHz. To introduce more time delay two registers may be
used as shown in the flow chart shown in figure 3. 9, in which register B is used for the
outer loop and register C is used for the inner loop.

 Fig. 3.9

Label Mnemonic Operand No. of T-states
 MVI B, M H 7
LOOP1 MVI C, N H 7

 LOOP DCR C 4

 70

 JNZ LOOP 10/7
 DCR B 4
 JNZ LOOP1 10/7
 RET 10

Total T-states used in this program will be given by:
 [] 1017110)1()4(7110)1(47171 xxxMMxxXNNxxMx ++−+++−+++=
 MVI DCR JNZ JNZ DCR JNZ JNZ RET

[] 10710104710104771 ++−+++−+++= MMNNMx

[] MNM 1441414 +++=
141814 ++= MMN

This is the general form for calculating the number of T-states of the program given
above, in which M is the counts in register-B (in decimal number) in outer loop and N is
the counts in register-C (in decimal number) in inner loop.
 Total time delay is therefore given by:
 ()141814 ++= MMNTDelay x Time of one T-state

Example 3.8 Write a delay subroutine program for SAP-II computer to introduce a time
delay of 1 millisec using only one register. Let the system frequency is 2 MHz.
Solution. System frequency = 2 MHz
 Time delay of T-state = 0.5 µsec.
 We shall now find the value of N to be stored to the register.
 []xNTDelay 114 += 0.5 µsec

 1000 µsec = [] secµ5.0114 xN +

 1
7

1000−=N

 142
7

993≅= decimal number

 142 = 8E H
 So the program for the delay of 1 millisec is as given below:

Label Mnemonic Operand
 MVI C, 8E H

 LOOP DCR C
 JNZ LOOP
 RET

Example 3.9 Write a delay subroutine program for SAP-II computer to introduce a time
delay of 10 millisec using two registers. Decimal number 10 may be stored in register B
(for outer loop). Let the system frequency is 2 MHz.
Solution. System frequency = 2 MHz
 In this case M = 1010 = 0A H
 N is to be calculated as:

()141814 ++= MMNTDelay x Time of one T-state

 Time of T-state = 0.5 µsec
 () SxxxNxms µ5.0141018101410 ++=

 71

 () SxNs µµ 5.019414010000 +=

 ()19414020000 += N

 ()19420000140 −=N

 EN 8142
140

19806 === H

 The Subroutine program for the required time delay is therefore given as:
Label Mnemonic Operand
 MVI B, 0A H
LOOP1 MVI C, 8E H

 LOOP DCR C
 JNZ LOOP
 DCR B
 JNZ LOOP1
 RET

Example 3.10 (a) What will be the time delay introduced in the computer, if the
following subroutine program is executed. Assume the system frequency is 2 MHz.

 MVI B, 64 H
LOOP1 MVI C, 8E H

 LOOP DCR C
 JNZ LOOP
 DCR B
 JNZ LOOP1

 RET
(b) How much maximum delay can be introduced by this subroutine program?
(c) Modify this program to introduce a time delay of 1 sec.
(d) Modify this program to introduce a time delay of 10 sec.
Solution. In this subroutine program M = 64 H = 10010
 N = 8E H = 14210
 Time of one T-state = 0.5 µsec

()141814 ++= MMNTDelay x Time of one T-state

 ()141814 ++= MMN x 0.5µsec

 ()141001814210014 ++= xxx x 0.5µsec

 ()141800198800 ++= x 0.5µsec
 200614= x 0.5µsec
 100307= µsec
 = 100.3 msec
 1.0≅ sec
Approx. 0.1 sec delay is introduced by this subroutine program.
(b) The maximum time delay that can be introduced by this subroutine program is
calculated if we consider the maximum value of M and N as FF H.
 i.e. M = FF H = 25510
 N = FF H = 25510

()141814 ++= MMNTDelay x Time of one T-state

 ()141814 ++= MMN x 0.5µsec

 72

 ()142551825525514 ++= xxx x 0.5µsec
 914954= x 0.5µsec
 457477= µsec
 46.0≅ sec
(c) To introduce a time delay of 1 sec, the given program can be run 10 times using

one more register say A-register. The modified program is given below:

 Label Mnemonic Operand

 MVI A, 0A H
LOPP3 MVI B, 64 H
LOOP2 MVI C, 8E H

 LOOP1 DCR C
 JNZ LOOP1
 DCR B
 JNZ LOOP2
 DCR A
 JNZ LOOP3

 RET
(d) To introduce a time delay of 10 sec, in the above program 64 H (10010) can be

taken in place of 0A H (1010). The subroutine program will be as given below:
 Label Mnemonic Operand

 MVI A, 64 H
LOPP3 MVI B, 64 H
LOOP2 MVI C, 8E H

 LOOP1 DCR C
 JNZ LOOP1
 DCR B
 JNZ LOOP2
 DCR A
 JNZ LOOP3

 RET
Example 3.11 Write a program in assembly language of SAP-II computer to count
continuously in hexadecimal from FF H to 00 H. Use subroutine program also to set up a
one millisecond delay between each count and display the number at one of the output
port. Assume the system frequency is 2 MHz.
Solution. For its programming load a count 00 H in one register say B-register.
Decrement the content of B-register, so that in B-register the counts are FF H. Display
this count on one of the output port say 04 H. Then introduce a delay of 1 millisec in a
subroutine program. After the delay, decrement the counts in B-register and proceed
continuously as discussed above.
 The program is given below:
Main Program

Label Mnemonic Operand Comment
 MVI B, 00 H ; Loads the count 00 H in B-register.

[] HB 00← .

 73

START DCR B ; Decrements the counts of B-
register.

 CALL DELAY ; Calls the delay subroutine
program.

 MOV A, B ; Moves the content of B to A.
 OUT PORT 04 H ; Displays the data at the output port.

 JMP START
Subroutine Program (Delay program of 1msec)

Label Mnemonic Operand
DELAY MVI C 8E H

 LOOP DCR C
 JNZ LOOP
 RET

 Subroutine program is the same as discussed in example 3.7.
Example 3.12 Suppose SAP-II computer can input a data (one byte) from port 2. Write
an assembly language program to find if the bit 1 (A1) is zero or one. If the bit 1 is one, it
should load the accumulator with ASCII Y otherwise ASCII N. The accumulator data
should be available at output port 4. The hexadecimal number for ASCII Y is 59 H and
for ASCII N is 4E H.
Solution.

Label Mnemonic Operand Comment
 IN 02 H ; Input a byte (data) from input port

02H.
 ANI 02 H ; Isolate bit A1.

 JZ NO ; Jump if A1 is zero.
 MVI A, 59 H ; Loads Y to Acc.
 JMP END ; Jump to END.
 NO MVI A, 4E H ; Loads N to Acc.

END OUT 04 H ; Output is available at port 04 H.
 HLT ; Stop processing.

Example 3.13 Write a program in assembly language of SAP-II computer to subtract a
number stored in memory location 2100 H from the number in memory location 2101 H
using addition method. The result should be stored in memory location 2102 H. If the
result is negative, memory location should be loaded with 00 H.
Solution. In this problem subtraction is to be carried out using addition method. So we
have to add 2’s complement of the number in memory location 2101 H.

Label Mnemonic Operand Comment
 LDA 2100 H ; Loads the Acc. the content stored

in 2100 H.
 CMA ; Takes 1’s complement of the

number in Acc.
 INR A : Acc. content is added with to get

2’s complement in Acc.

 74

 MOV B, A ; Moves the Acc. content to B-
register.

 LDA 2101 H ; Loads the Acc. the content stored
in 2101 H (second number).

 ADD B ; Adds 2’s complement of the
number with Acc.

 JM END ; Jump if the sum is negative.
 STA 2102 H ; Stores the answer if positive.

 HLT ; Stop processing.
END MVI A, 00 H ; Moves 00 H to Acc.
 STA 2102 H ; If answer is negative store 00 H to

2102 H.
 HLT ; Stop processing.
Example 3.14 Write a program in assembly language using SAP-II instructions that
inputs a byte from port 2 and determine if decimal number is even or odd. If the input
byte is even load FF H otherwise 00 H to memory location 2500 H.
Solution.

Label Mnemonic Operand Comment
 IN 02 H ; Input a byte (data) from input port

02H.
 ANI 01 H ; Isolate bit A0.
 JNZ ODD ; Jump if Odd.
 MVI A, FF H ; Loads FF H to Acc.
 JMP END ; jump to END.
 ODD MVI A, 00 H ; Loads 00 H to Acc.

END STA 2500 H ; Stores the answer in 2500 H.
 HLT ; Stop processing.

PROBLEMS

1. Draw the block diagram of the architecture of SAP-II computers. Discuss the

working of each block.
2. What is the difference between the architectures of SAP-I and SAP-II computers?
3. How the sign and zero flags work in arithmetic and logic unit of SAP-II

computers?
4. Name and discuss the five different categories in which the instruction set of

SAP-II computers are divided.
5. Name and discuss the different addressing modes to specify the instruction of

SAP-II computers.
6. Discuss Implied addressing to specify the data of instructions of SAP-II

computers.
7. Describe with examples one byte, two byte and three byte instructions of SAP-II

computers.
8. What is the difference between assembly language program and machine

language program? What do you understand by mnemonics?

 75

9. How delay is introduced through software in SAP-II computers using only one
register? How much maximum delay can be introduced with one register if the
frequency of the clock is (i) 1 MHz (ii) 3 MHz?

10. How much delay can be introduced using two registers in SAP-II computers, if
the system frequency is 2 MHz?

11. Write the subroutine program to introduce a delay of 1 sec using all the three
registers of SAP-II computers. Further assume that the system clock frequency is
2 MHz.

12. Write a program in assembly language using SAP-II instructions to multiply the
two decimal numbers 13 and 10. The answer should be stored in memory location
2100 H.

13. Write a program in assembly language using SAP-II instructions to complement a
number lying at 2100 H memory location. Store the complement at 2101 H.

14 Write a program in assembly language using SAP-II instructions to perform the
following arithmetic operation:

WZYX −−+
where X, Y, Z and W are hexadecimal numbers stored in memory locations 2101
H to 2104 H. The final answer should be stored in 2100 H. Assume that there is
no carry or borrow.

15. Write a program in assembly language using SAP-II instructions to get 2’s
complement of a number stored in memory location 2501 H. Store the answer at
2502 H .

16. Write a program in assembly language using SAP-II instructions to add decimal
numbers 70 and 36. Answer is to be stored in memory location 2100 H.

17. Write a program in assembly language using SAP-II instructions to multiply two
decimal numbers 33 and 6 and store the answer in memory location 2100 H. Use
subroutine for multiplication.

18. Write a subroutine program (in assembly language of SAP-II) to introduce a time
delay of 20 msec. Let the system frequency is 2 MHz.

19. Write a subroutine program (in assembly language of SAP-II) to introduce a time
delay of 1 minute. Let the system frequency is 1 MHz.

20. Write an assembly language program using SAP-II instructions to mask off A1
and A2 bits of a given number. Let the given number is 6E H.

4
SAP – III

 In this chapter, programming model and instruction set of SAP-III computer will
be discussed. After the study of this computer we will be in a position to understand the
details of the popular 8-bit microprocessor 8085 with ease.
4.1 PROGRAMMING MODEL OF SAP-III COMPUTER
 One step head of the evolution of modern computers is the 8-bit microcomputer
named as SAP-III computer. The CPU of this computer is upward compatible with 8085
microprocessor. The programming model or software model of SAP-III computer is
given in figure 4.1. It consists of some more registers than SAP-II computers. In addition
to Accumulator (A), B and C registers it contains four more 8-bit registers named as D,
E, H and L registers. Because of these registers the flexibility in programming is much
more. With special instructions the registers B, C, D, E, H and L may be used as extended
register pairs B-C register pair, D-E register pair and H-L register pair, so that 16-bit data
may be operated with these registers. It has 16-bit Program counter and 16-bit Stack
pointer. The stack pointer is used for stack purposes which will be discussed later in this
chapter.

Fig. 4.1

 SAP-III computer has a four-bit flag register associated with Accumulator. The
four flags are Sign flag (S), Zero flag (Z), Carry flag (CY) and Parity flag (P).
Sign Flag (S)

 77

 The sign flag is set (S = 1), if accumulator content is negative and it is reset (S =
0) if accumulator content is positive. The logic circuit is the same as discussed for SAP-II
computers.
Zero Flag (Z)
 The zero flag is set (Z = 1), if accumulator content is zero and it is reset (Z = 0) if
accumulator content is not zero. The logic circuit is the same as discussed for SAP-II
computers.

Carry Flag (CY)
 The carry flag (CY) is used to detect overflow in some arithmetic and logic
operations. In SAP-III computer, the accumulator of CPU is only 8-bit wide. The
unsigned binary numbers from 0 to 255 or signed numbers (2’s complement) from – 128
to +127 can be the content of the accumulator. The arithmetic operations addition and
subtraction are performed using 2’s complement adder / subtractor circuit. The logic
circuit diagram of such a 2’s complement adder / subtractor is shown in figure 4.2.

Fig. 4.2

 In this circuit one input of each of the exclusive – OR gates are connected to
common terminal named as SUB; this common terminal is also connected to carry bit of
first full adder. During the addition, SUB terminal is kept low and for subtraction it is
kept high. The working of this circuit may be described as given below.
 The accumulator content directly goes to full adders. The content, which is to be
added to or subtracted from the accumulator content is applied to full adders through the
exclusive OR gates. SUB terminal being low during the addition, so the exclusive-OR
gates send directly the addend to the full adders. The full adders add the two contents. If
there is any overflow, CARRY becomes high which finally sets CY flag. If on the other
hand there is no overflow, CARRY is low and CY flag is reset.
 So CY = 1, if there is carry and CY = 0, if there is no carry.
 Similarly, during subtraction SUB = 1 and the exclusive OR gates converts the
subtrahend to its equivalent 1’s complement. Since SUB terminal (SUB = 1) is connected
to first full adder so 1’s complement of the subtrahend gets converted to its equivalent 2’s
complement. For subtraction, 2’s complement of the subtrahend is added with the

 78

accumulator content. If the CARRY signal is high (CARRY = 1), there is an end around
carry (EAC), the final exclusive OR gate gives CY = 0 indicating there is no borrow. On
the other hand, if there is no CARRY (CARRY = 0 or no EAC), carry flag CY will be set
(CY = 1) indicating that there is borrow.
 So CY = 0 (Carry flag is restet) there is no carry or borrow.
 CY = 1 (Carry flag is set) there is carry or borrow.
 The carry flag acts as carry bit for addition and it works as borrow bit for
subtraction.
Parity Flag (P)
 In addition to sign, carry and zero flags there is also a parity flag. The parity flag
is set if there are even number of 1’s in the accumulator and it is reset if there are odd
number of 1’s.
 So P = 1 for even parity
 and P = 0 for odd parity.
 The logic circuit diagram of the parity bit generator for showing the correct parity
is shown in figure 4.3.

Fig. 4.3

4.2 INSTRUCTION SET OF SAP-III COMPUTER
 All the instructions which have been discussed in SAP-II computers are also used
in SAP-III computers. In addition to these instructions there are many more instructions
which will be discussed here.
 The instruction set of SAP-III computers has been classified into following
groups.

1. Data Transfer Group
2. Arithmetic Group
3. Branch Group
4. Stack, Input/Output and Machine Control Group

 79

4.2.1 Data Transfer Group
 The function of data transfer group of instructions is to transfer the data from
register to register, register to memory and also immediate transfer of data (given) to
memory location. This group of instruction is also there in SAP-II computers but in SAP-
III computers more instruction are there due to more registers. Data transfer group of
instructions are given in table 4.1.
 These data transfer instructions can further be subdivided on the basis of modes of
addressing i.e. direct, immediate and register addressing.

Table 4.1
Data Transfer Group
Instruction Op.

Code
Address-

ing
modes

No
of
T-

state
s

No of
bytes

of
instr.

Flags
affected

Operation

LDA address 3A Direct 13 3 None [] []addressMA ←
STA address 32 Direct 13 3 None [] []AM address ←

MOV A, A 7F Register 4 1 None [] []AA ←
MOV A, B 78 Register 4 1 None [] []BA ←
MOV A, C 79 Register 4 1 None [] []CA ←
MOV A, D 7A Register 4 1 None [] []DA ←
MOV A, E 7B Register 4 1 None [] []EA ←
MOV A, H 7C Register 4 1 None [] []HA ←
MOV A, L 7D Register 4 1 None [] []LA ←
MOV B, A 47 Register 4 1 None [] []AB ←
MOV B, B 40 Register 4 1 None [] []BB ←
MOV B, C 41 Register 4 1 None [] []CB ←
MOV B, D 42 Register 4 1 None [] []DB ←
MOV B, E 43 Register 4 1 None [] []EB ←
MOV B, H 44 Register 4 1 None [] []HB ←
MOV B, L 45 Register 4 1 None [] []LB ←
MOV C, A 4F Register 4 1 None [] []AC ←
MOV C, B 48 Register 4 1 None [] []BC ←
MOV C, C 49 Register 4 1 None [] []CC ←
MOV C, D 4A Register 4 1 None [] []DC ←
MOV C, E 4B Register 4 1 None [] []EC ←
MOV C, H 4C Register 4 1 None [] []HC ←
MOV C, L 4D Register 4 1 None [] []LC ←
MOV D, A 57 Register 4 1 None [] []AD ←
MOV D, B 50 Register 4 1 None [] []BD ←

 80

MOV D, C 51 Register 4 1 None [] []CD ←
MOV D, D 52 Register 4 1 None [] []DD ←
MOV D, E 53 Register 4 1 None [] []ED ←
MOV D, H 54 Register 4 1 None [] []HD ←
MOV D, L 55 Register 4 1 None [] []LD ←
MOV E, A 5F Register 4 1 None [] []AE ←
MOV E, B 58 Register 4 1 None [] []BE ←
MOV E, C 59 Register 4 1 None [] []CE ←
MOV E, D 5A Register 4 1 None [] []DE ←
MOV E, E 5B Register 4 1 None [] []EE ←
MOV E, H 5C Register 4 1 None [] []HE ←
MOV E, L 5D Register 4 1 None [] []LE ←
MOV H, A 67 Register 4 1 None [] []AH ←
MOV H, B 60 Register 4 1 None [] []BH ←
MOV H, C 61 Register 4 1 None [] []CH ←
MOV H, D 62 Register 4 1 None [] []DH ←
MOV H, E 63 Register 4 1 None [] []EH ←
MOV H, H 64 Register 4 1 None [] []HH ←
MOV H, L 65 Register 4 1 None [] []LH ←
MOV L, A 6F Register 4 1 None [] []AL ←
MOV L, B 68 Register 4 1 None [] []BL ←
MOV L, C 69 Register 4 1 None [] []CL ←
MOV L, D 6A Register 4 1 None [] []DL ←
MOV L, E 6B Register 4 1 None [] []EL ←
MOV L, H 6C Register 4 1 None [] []HL ←
MOV L, L 6D Register 4 1 None [] []LL ←
MOV A, M 7E Register 7 1 None [] []LHMA −←
MOV B, M 46 Register 7 1 None [] []LHMA −←
MOV C, M 4E Register 7 1 None [] []LHMA −←
MOV D, M 56 Register 7 1 None [] []LHMA −←
MOV E, M 5E Register

indirect
7 1 None [] []LHMA −←

MOV H, M 66 Register
indirect

7 1 None [] []LHMA −←

MOV L, M 6E Register 7 1 None [] []LHMA −←
MOV M, A 77 Register

indirect
7 1 None [] []AM LH ←−

MOV M, B 70 Register 7 1 None [] []BM LH ←−

 81

Indirect
MOV M, C 71 Register

indirect
7 1 None [] []CM LH ←−

MOV M, D 72 Register
indirect

7 1 None [] []DM LH ←−

MOV M, E 73 Register
indirect

7 1 None [] []EM LH ←−

MOV M, H 74 Register
indirect

7 1 None [] []HM LH ←−

MOV M, L 75 Register
indirect

7 1 None [] []LM LH ←−

MVI A, data 3E Immediate 7 2 None [] dataA ←
MVI B, data 06 Immediate 7 2 None [] dataB ←
MVI C, data 0E Immediate 7 2 None [] dataC ←
MVI D, data 16 Immediate 7 2 None [] dataD ←
MVI E, data 1E Immediate 7 2 None [] dataE ←
MVI H, data 26 Immediate 7 2 None [] dataH ←
MVI L, data 2E Immediate 7 2 None [] dataL ←
MVI M, data 36 Immediate 10 2 None [] dataM LH ←−

(a) Direct Data Transfer Instructions
 There is basically two direct data transfer instructions for SAP-III computers
which are the same used in SAP-II computers. These are:
 (i) LDA address
 This is mnemonic for Loads the accumulator direct. It transfers the content
stored in the addressed memory location (given by address) to accumulator.
 [] []addressMA ←

 No flag is affected in this instruction. It is three byte instruction.
 For example if 2AH data is stored in memory location 2500H before the execution of
LDA 2500H instruction, then after the execution of this instruction, the data 2AH will be
transferred to accumulator.
 i.e. [] AA 2←
 (ii) STA address
 This is mnemonic for Stores the accumulator direct. It transfers the content stored
in the accumulator to addressed memory location (given by address).
 [] []AM address ←

 No flag is affected in this instruction. It is also three byte instruction.
 For example if 16H data is stored in the accumulator before the execution of STA
2100H instruction, then after the execution of this instruction, the data 16H will be
transferred to the addressed memory location.
 i.e. [] 162100 ←M

(b) Register Data Transfer Instructions

 82

 These instructions transfer 8-bit data stored in one register to other register. The
registers in SAP-III computer are A, B, C, D, E, H and L so the data stored in one of
these registers may be transferred to other register. The format for this data transfer
instruction is given as:
 MOV reg1, reg2 (Move Register)
 where reg1 = A, B, C, D, E, H or L
 reg2 = A, B, C, D, E, H or L
 This instruction copies (transfers) the content stored in reg2 to reg1.

[] []21 regreg ←
Following are the possible combinations of MOV instruction.

 MOV A, A MOV B, A
 MOV A, B MOV B, B
 MOV A, C MOV B, C
 MOV A, D MOV B, D
 MOV A, E MOV B, E
 MOV A, H MOV B, H
 MOV A, L MOV B, L

 MOV C, A MOV D, A
 MOV C, B MOV D, B
 MOV C, C MOV D, C
 MOV C, D MOV D, D
 MOV C, E MOV D, E
 MOV C, H MOV D, H
 MOV C, L MOV D, L

 MOV E, A MOV H, A
 MOV E, B MOV H, B
 MOV E, C MOV H, C
 MOV E, D MOV H, D
 MOV E, E MOV H, E
 MOV E, H MOV H, H
 MOV E, L MOV H, L

 MOV L, A
 MOV L, B
 MOV L, C
 MOV L, D
 MOV L, E
 MOV L, H
 MOV L, L
 These instructions are of one byte instruction and no flag is affected in these
instructions.

 83

 For example if L = 23 H before the execution of instruction MOV C, L then after
the execution of this instruction 23 H data in register L will be transferred to register C.
 i.e. [] HL 23←
 (c) Register Indirect Data Transfer Instructions
 In SAP-III computers, there are some register indirect data transfer instructions in
which H-L register pair acts like ‘data pointer’. The data pointer is represented by M
which denotes the memory location whose address is given in the H-L register pair. It is
basically represented by HLM .

 For example H L = 2500 H then HLMM ⇒ represents the memory location

whose address is 2500 H. It indicates the memory location 2500M .

 The instructions related to register immediate data transfer are given as:
 (i) MOV reg, M (Moves register from memory)
 where reg = A, B, C, D, E, H or L
 This instruction is indirect read instruction. It moves / copies the data stored in
memory location whose address is given in H-L register pair, to the given register.
 i.e.
 [] []HLMreg ←
 The possible combinations of this instruction are:
 MOV A, M
 MOV B, M
 MOV C, M
 MOV D, M
 MOV E, M
 MOV H, M
 MOV L, M
 For example consider 12H data is stored in the memory location whose address is
given in H-L register pair (i.e. H-L = 2500H). After the execution of the instruction
MOV B, M the data 12H will be stored in B register.
 [] 12←B
 These are one byte instruction and no flag is affected in these instructions.
 (ii) MOV M, reg (Moves memory from register)
 where reg = A, B, C, D, E, H or L
 This instruction moves / copies the data in the given register to the memory
location addressed by H-L register pair.
 i.e.
 [] []regM HL ←

It performs reverse work of MOV reg, M instruction. The possible combinations
of this instruction are:
 MOV M, A
 MOV M, B
 MOV M, C
 MOV M, D
 MOV M, E
 MOV M, H

 84

 MOV M, L
 For example let D = 4E H H = 23 H L = 00 H

Then after execution of the instruction MOV M, D will produce the result:
 [] EM 42300 ←

 These are also one byte instructions and no flag is affected in these instructions.
(d) Immediate Data Transfer Instructions
 The format for immediate data transfer instructions is
 MVI reg, data (Move Immediate)
 where reg = A, B, C, D, E, H, L orM
 This instruction transfers the given data to the register (reg).
 [] datareg ←
 The possible combinations of move immediate instruction are given below:
 MVI A, data
 MVI B, data
 MVI C, data
 MVI D, data
 MVI E, data
 MVI H, data
 MVI L, data
 MVI M, data
 For example
 MVI E, 1AH
 means the given data 1AH will be copied into the register E.
 [] AE 1←
Also MVI M, 2BH
 means the given data 2BH will be copied into the memory location whose
address is given in H-L register pair. If H = 21 H L = 00 H then
 [] BM 22100 ←

 All these instructions are two byte instructions and no flag is affected.
4.2.2 Arithmetic Group of Instructions
 This group of instructions (given in table 4.2) includes the instructions for
addition and subtraction. Some of these instructions are the same as discussed in SAP-II
computer.

Table 4.2
Arithmetic Group
Instruction Op.

Code
Addressing

modes
No of

T-
State

s

No of
bytes

of
instr .

Flags
affected

Operation

ADD A 87 Register 4 1 All [] [] []AAA +←
ADD B 80 Register 4 1 All [] [] []BAA +←
ADD C 81 Register 4 1 All [] [] []CAA +←
ADD D 82 Register 4 1 All [] [] []DAA +←
ADD E 83 Register 4 1 All [] [] []EAA +←

 85

ADD H 84 Register 4 1 All [] [] []HAA +←
ADD L 85 Register 4 1 All [] [] []LAA +←
ADD M 86 Register

indirect
7 1 All [] [] []LHMAA −+←

ADI data C6 Immediate 7 2 All [] [] dataAA +←
ADC A 8F Register 4 1 All [] [] [] CYAAA ++←
ADC B 88 Register 4 1 All [] [] [] CYBAA ++←
ADC C 89 Register 4 1 All [] [] [] CYCAA ++←
ADC D 8A Register 4 1 All [] [] [] CYDAA ++←
ADC E 8B Register 4 1 All [] [] [] CYEAA ++←
ADC H 8C Register 4 1 All [] [] [] CYHAA ++←
ADC L 8D Register 4 1 All [] [] [] CYLAA ++←
ADC M 8E Register

indirect
7 1 All [] [] [] CYMAA LH ++← −

ACI data CE Immediate 7 2 All [] [] CYdataAA ++←
DAD B 09 Register 10 1 CY BCBCBC +←
DAD D 19 Register 10 1 CY DEDEDE +←
DAD H 29 Register 10 1 CY HLHLHL +←
SUB A 97 Register 4 1 All [] [] []AAA −←
SUB B 90 Register 4 1 All [] [] []BAA −←
SUB C 91 Register 4 1 All [] [] []CAA −←
SUB D 92 Register 4 1 All [] [] []DAA −←
SUB E 93 Register 4 1 All [] [] []EAA −←
SUB H 94 Register 4 1 All [] [] []HAA −←
SUB L 95 Register 4 1 All [] [] []LAA −←
SUB M 96 Register

indirect
7 1 All [] [] []LHMAA −−←

SUI data D6 Immediate 7 2 All [] [] dataAA −←
SBB A 9F Register 4 1 All [] [] [] CYAAA −−←
SBB B 98 Register 4 1 All [] [] [] CYBAA −−←
SBB C 99 Register 4 1 All [] [] [] CYCAA −−←
SBB D 9A Register 4 1 All [] [] [] CYDAA −−←
SBB E 9B Register 4 1 All [] [] [] CYEAA −−←
SBB H 9C Register 4 1 All [] [] [] CYHAA −−←
SBB L 9D Register 4 1 All [] [] [] CYLAA −−←
SBB M 9E Register

indirect
7 1 All [] [] [] CYMAA LH −−← −

SBI data DE Immediate 7 2 All [] [] CYdataAA −−←

 86

INR A 3C Register 4 1 All but
not CY

[] [] 1+← AA

INR B 04 Register 4 1 All but
not CY

[] [] 1+← BB

INR C 0C Register 4 1 All but
not CY

[] [] 1+← CC

INR D 14 Register 4 1 All but
not CY

[] [] 1+← DD

INR E 1C Register 4 1 All but
not CY

[] [] 1+← EE

INR H 24 Register 4 1 All but
not CY

[] [] 1+← HH

INR L 2C Register 4 1 All but
not CY

[] [] 1+← LL

INR M 34 Register
indirect

10 1 All but
not CY

[] [] 1+← −− LHLH MM

INX B 03 Register 6 1 None 1+← BCBC
INX D 13 Register 6 1 None 1+← DEDE
INX H 23 Register 6 1 None 1+← HLHL
DCR A 3D Register 4 1 All but

not CY
[] [] 1−← AA

DCR B 05 Register 4 1 All but
not CY

[] [] 1−← BB

DCR C 0D Register 4 1 All but
not CY

[] [] 1−← CC

DCR D 15 Register 4 1 All but
not CY

[] [] 1−← DD

DCR E 1D Register 4 1 All but
not CY

[] [] 1−← EE

DCR H 25 Register 4 1 All but
not CY

[] [] 1−← HH

DCR L 2D Register 4 1 All but
not CY

[] [] 1−← LL

DCR M 35 Register
indirect

7 1 All but
not CY

[] [] 1−← −− LHLH MM

DCX B 0B Register 6 1 None 1−← BCBC
DCX D 1B Register 6 1 None 1−← DEDE
DCX H 2B Register 6 1 None 1−← HLHL

RLC 07 --- 4 1 CY Rotate left through
carry

RAL 17 --- 4 1 CY Rotate all left
RRC 0F --- 4 1 CY Rotate right through

carry
RAR 1F --- 4 1 CY Rotate all right

 87

(a) Add instructions
 Following are the add instructions:

(i) ADD reg (Add register)
where reg = A, B, C, D, E, H or L.
It adds the content stored in given register with the accumulator. The result of this

addition is stored in accumulator.
 [] [] []regAA +←
 All the flags are affected with this ‘ADD reg’ instruction.
 The possible combinations of this instruction are as given below:
 ADD A
 ADD B
 ADD C
 ADD D
 ADD E
 ADD H
 ADD L
 Suppose before the execution of the instruction ADD E
 10101111=A
 10110101=E
 0=CY , 1=S , 0=Z and 1=P
 then after the execution of the instruction ADD E we get the following result:
 A = 1 0 1 0 1 1 1 1
 E = 1 0 1 1 0 1 0 1

 A = 1 0 1 1 0 0 1 0 0
 CY
 The flags will be affected as;
 1=CY , 0=S , 0=Z and 0=P
 1=CY Since there is a final carry.

0=S Since Acc content is positive as MSB is zero.
0=Z Since Acc content is non zero.
0=P Since Acc content has odd parity.

(ii) ADD M (Add Memory)
This instruction is one byte instruction and adds the content of memory location

whose address is given in H-L register pair with the accumulator and the answer is stored
in accumulator.

 [] [] []HLMAA +←
In this instruction too all flags are affected. This instruction is similar to ADD reg.

For example let A = 40 H H = 21 H L = 00 H
 and AHM 32100 =

Then after execution of the instruction ADD M will produce the result:
 A = 7A H
 All flag will, however, be affected as per the instruction.

(iii) ADI data (Adds immediately the data)

 88

It immediately adds the given data with the accumulator and the answer will be
stored in Accumulator.

 [] [] dataAA +←
This is a two-byte instruction. All flags will be affected with this instruction

similar to ADD reg instruction.
(iv) ADC instructions
The format for ADC instruction is
 ADC reg (Add with carry)
where reg = A, B, C, D, E, H or L.
It adds the content stored in given register and content of CY flag with the content

of accumulator. The result of this addition is stored in accumulator.
 [] [] [] []CYregAA ++←
 All the flags are affected with this ‘ADC reg’ instruction.
 The possible combinations of this instruction are as given below:
 ADC A
 ADC B
 ADC C
 ADC D
 ADC E
 ADC H
 ADC L
 Suppose before the execution of the instruction ADCD
 10101001=A
 10111101=D
 1=CY , 1=S , 0=Z and 1=P
 then after the execution of the instruction ADD D we get the following result:
 CY = 1
 A = 1 0 1 0 1 0 0 1
 D = 1 0 1 1 1 1 0 1

 A = 1 0 1 1 0 0 1 1 1
 CY
 All flags will be affected.

(v) ADC M (Add Memory with Carry)
This instruction is one byte instruction and adds the content of memory location

whose address is given in H-L register pair to the accumulator with carry and the answer
is stored in accumulator.

 [] [] []HLMAA +← +CY
In this instruction too all flags are affected. This instruction is similar to ADD reg.

For example let A = 50 H CY = 1 H = 25 H L = 00 H
 and BHM 32500 =

Then after execution of the instruction ADC M will produce the result:
 A = 8C H
 All flag will, however, be affected as per the result.

 89

(vi) ACI data (Adds immediately the data with Carry)
It immediately adds the given data to the accumulator with carry and the answer

will be stored in Accumulator.
 [] [] dataAA +← +CY
This is a two-byte instruction. All flags will be affected with this instruction.

 (vii) DAD Instruction
 The format for this instruction is
 DAD rp (Double Add)
 where rp stands for register pair. It may be B, D or H.
 rp as B represents B-C register pair,
 rp as D represents D-E register pair,
 rp as H represents H-L register pair.
 This instruction adds the contents of given register pair with the contents of H-L
register pair. The answer will be stored in H-L register pair.
 [] [] []rpHLHL +←
 This instruction has the following combinations:
 DAD B [] [] []BCHLHL +←

 DAD D [] [] []DEHLHL +←

 DAD H [] [] []HLHLHL +←

 For example before the execution of the instruction DAD D, we have the
following data in different registers.
 DE = 2AB6 H
 HL = 012 7 H
 After the execution of this instruction we HL = 2BDD H
 Only carry flag will be affected in this instruction.
(b) Subtract Instructions

Following are the subtract instructions:
 (i) SUB reg (Subtract Register)

 where reg = A, B, C, D, E, H or L.
It subtracts the contents stored in given register from the accumulator. The result

of this subtraction is stored in accumulator.
 [] [] []regAA −←
 All the flags are affected with this ‘SUB reg’ instruction.
 The possible combinations of this instruction are as given below:
 SUB A
 SUB B
 SUB C
 SUB D
 SUB E
 SUB H
 SUB L
 Suppose before the execution of the instruction SUBD
 10101111=A

 90

 10110101=D
 0=CY , 1=S , 0=Z and 1=P
 then after the execution of the instruction SUBD we get the following result:
 A = 1 0 1 0 1 1 1 1
 D = 1 0 1 1 0 1 0 1

 A = 1 1 1 1 1 1 0 1 0
 CY

 All flags will be affected as per the accumulator contents.
(ii) SUB M (Subtract Memory)
This instruction is one byte instruction and subtracts the contents of memory

location whose address is given in H-L register pair from the accumulator and the answer
is stored in accumulator.

 [] [] []HLMAA −←
In this instruction too all flags are affected.

For example let A = 56 H H = 22 H L = 01 H
 and CHM 22201 =

Then after execution of the instruction SUB M will produce the result:
 A = 2A H
 All flag will however be affected as per the instruction.

(iii) SUI data (Subtracts immediately the data)
It immediately subtracts the given data with the accumulator contents and the

answer will be stored in Accumulator.
 [] [] dataAA −←
This is a two-byte instruction. All flags will be affected with this instruction.

 (iv) SBB reg (Subtract with Borrow)
 where reg = A, B, C, D, E, H or L.
This instruction subtracts the contents stored in given register from the

accumulator with borrow. The answer will be stored in accumulator.
 [] [] [] []CYregAA −−←
 All the flags are affected in the operation of this instruction.
 The possible combinations of this instruction are as given below:
 SBB A
 SBB B
 SBB C
 SBB D
 SBB E
 SBB H
 SBB L
 Suppose before the execution of the instruction SBBH
 10101111=A
 10110101=H
 0=CY , 1=S , 0=Z and 1=P
 then after the execution of the instruction SUBH we get the following result:
 A = 1 0 1 0 1 1 1 1

 91

 H = 1 0 1 1 0 1 0 1
 CY = 1

 A = 1 1 1 1 1 1 0 0 1
 CY

 All flags will be affected as per the accumulator contents.
 (v) SBB M (Subtract memory with Borrow)
 Similar to SBB reg, this instruction subtracts the content already stored in
memory location addressed by H-L register pair with borrow bit (carry flag) from the
accumulator contents and the answer is stored in accumulator.
 [] [] [] []CYMAA HL −−←

All flags will be affected as per the accumulator contents.
 (vi) SBI data (Subtract immediate with Borrow)
 SBI data instruction subtracts the given data with borrow bit (carry flag) from the
accumulator contents and it stores the answer in accumulator.
 [] [] []CYdataAA −−←

All flags will be affected as per the accumulator contents.
(c) Increment Instructions
 The increment instructions used in SAP-III computer are given below:
 (i) INR reg (Increment Register)

 where reg = A, B, C, D, E, H or L.
 It increments the contents of given register by one and answer is stored in the
given register.
 [] [] 1+← regreg
 The possible combinations of this instruction are:
 INR A
 INR B
 INR C
 INR D
 INR E
 INR H
 INR L
 These instructions do not affect the CY flag but affect all other flags.
 For example if Z = 0, S = 1, and CY = 0 and contents of register is
 C = 1 1 1 1 1 1 1 1 , then after the execution of the
instruction INR C we have:
 C = 0 0 0 0 0 0 0 0
 Z = 1, S = 0, and CY = 0
(ii) INR M (Increment Memory)

It increments the contents of memory location addressed by H-L register pair by 1
and stores the answer in the addressed memory location.
 [] [] 1+← HLHL MM

Similar to INR reg, all flags except carry flag will be affected after the execution
of this instruction.
(iii) INX rp (Increment register pair)

 92

 where rp is the register pair as B-C register pair, D-E register pair and H-L
register pair. This instruction increments the contents given in register pair by one and the
result is stored in the given register pair.
 [] [] 1+← rprp
 The possible combinations of this instruction are:
 INX B
 INX D
 INX H
 No flag is affected with the execution of this instruction.
 For example if H = FF H and L = FF H CY = 1, Z = 0
 After the execution of the instruction INX H, we have the contents
in H-L pair as: H = 25 H and L = 01 H ; the contents of the flags will not be
affected. So the carry and zero flag will have the same value as having before the
execution of this instruction i.e. CY = 1, Z = 0
(d) Decrement Instructions
 The decrement instructions used in SAP-III computer are given below:
 (i) DCR reg (Decrement Register)

 where reg = A, B, C, D, E, H or L.
 It decrements the contents of given register by one and answer is stored in the
given register.
 [] [] 1−← regreg
 The possible combinations of this instruction are:
 DCR A
 DCR B
 DCR C
 DCR D
 DCR E
 DCR H
 DCR L
 These instructions do not affect the CY flag but affect all other flags.
 For example if Z = 0, S = 1, and CY = 0 and contents of D register is
 D = 0 0 0 0 0 0 0 0 , then after the execution of the
instruction DCR D we have:
 C = 1 1 1 1 1 1 1 1
 Z = 0, S = 1, and CY = 0
(ii) DCR M (Decrement Memory)

It decrements the contents of memory location addressed by H-L register pair by
1 and stores the answer in the addressed memory location.
 [] [] 1−← HLHL MM

Similar to DCR reg, all flags except carry flag will be affected after the execution
of this instruction.
(iii) DCX rp (Increment register pair)
 where rp is the register pair as B-C register pair, D-E register pair and H-L
register pair. This instruction decrements the contents given in register pair by one and
the result is stored in the given register pair.
 [] [] 1−← rprp

 93

 The possible combinations of this instruction are:
 DCX B
 DCX D
 DCX H
 No flag will be affected with the execution of this instruction like INX rp.
 For example if D = 23 H and E = 00 H
 After the execution of the instruction DCX D, we have the contents
in D-E pair as: D = 22 H and E = FF H
(e) Rotate Instructions
 In rotate instructions, the accumulator contents are shifted either left or right. In
some instructions shifting may be through CY flag or without CY flag. Following are the
rotate instructions.
(i) RLC (Rotate Accumulator Left)
 In this instruction, the bits of the accumulator contents are shifted or rotated left.
The LSB of the accumulator is changed as MSB (before the execution). The CY flag is
modified as MSB (before the execution).

Fig. 4.4

 For example A = AE H and CY = 0, before the execution of the instruction
RLC. After the execution of the instruction MSB is saved in CY flag and also in the LSB
of the accumulator. The other bits are shifted left as shown in figure 4.4.
 i.e. [] []nn AA ←+1

 [] []70 AA ← also [] []7ACY ←

Only carry flag CY will be affected in this instruction and all other flags will be
unaffected.
(ii) RAL (Rotate Accumulator Left Through Carry)
 In this instruction, the bits of the accumulator contents will be shifted / rotated left
through carry. The content of carry flag CY will be stored in LSB of the accumulator and
MSB of the accumulator will be stored in CY flag. All other bits of the accumulator will
be shifted to the left.
 For example if A = 6A H and CY = 1 before the execution of RAL instruction,
then after the execution of this instruction the accumulator contents will be shifted as
shown in figure 4.5.

 94

Fig. 4.5

 In this instruction too only carry flag will be affected.
(iii) RRC (Rotate Accumulator Right)
 In this instruction, all the bits of accumulator are shifted or rotated right. The
MSB of the accumulator is changed as LSB (before the execution). The CY flag is
modified as MSB (before the execution).
 For example A = 93 H and CY = 0, before the execution of the instruction
RRC. After the execution of this instruction LSB is saved in CY flag and also in the MSB
of the accumulator. The other bits are shifted left as shown in figure 4.6.

Fig. 4.6

 In this instruction only carry flag CY will be affected and all other flags will be
unaffected.
(iv) RAR (Rotate Accumulator Right Through Carry)
 In this rotate instruction, all the bits of the accumulator contents will be shifted /
rotated right through carry. The content of carry flag CY will be stored in MSB of the
accumulator and LSB of the accumulator will be stored in CY flag; and all other bits of
the accumulator will be shifted to the right.

 95

 For example if A = 76 H and CY = 1 before the execution of RAR instruction,
then after the execution of this instruction the accumulator contents will be shifted as
shown in figure 4.7.

Fig. 4.7

 In this instruction too only carry flag will be affected.
4.2.3 Logic Transfer Group
 The logic group of instructions operates on registers, memory and conditional
flags. This group of instructions contains ANDing, ORing, XORing, complementing and
comparing of data (table 4.3).

Table 4.3
Logic Transfer Group
Instruction Op.

Code
Addressing

modes
No of

T-
states

No of
bytes

of
instr .

Flags
affected

Operation

ANA A A7 Register 4 1 All
(CY=0)

[] [] []AANDAA ..←

ANA B A0 Register 4 1 All
(CY=0)

[] [] []BANDAA ..←

ANA C A1 Register 4 1 All
(CY=0)

[] [] []CANDAA ..←

ANA D A2 Register 4 1 All
(CY=0)

[] [] []DANDAA ..←

ANA E A3 Register 4 1 All
(CY=0)

[] [] []EANDAA ..←

ANA H A4 Register 4 1 All
(CY=0)

[] [] []HANDAA ..←

ANA L A5 Register 4 1 All
(CY=0)

[] [] []LANDAA ..←

ANA M A6 Register
Indirect

7 1 All
(CY=0)

[] [] []LHMANDAA −← ..

ANI data E6 Immediate 7 2 All
(CY=0)

[] [] dataANDAA ..←

 96

ORA A B7 Register 4 1 All
(CY=0)

[] [] []AORAA ..←

ORA B B0 Register 4 1 All
(CY=0)

[] [] []BORAA ..←

ORA C B1 Register 4 1 All
(CY=0)

[] [] []CORAA ..←

ORA D B2 Register 4 1 All
(CY=0)

[] [] []DORAA ..←

ORA E B3 Register 4 1 All
(CY=0)

[] [] []EORAA ..←

ORA H B4 Register 4 1 All
(CY=0)

[] [] []HORAA ..←

ORA L B5 Register 4 1 All [] [] []LORAA ..←
ORA M B6 Register

Indirect
7 1 All

(CY=0)
[] [] []LHMORAA −← ..

ORI data F6 Immediate 7 2 All
(CY=0)

[] [] dataORAA ..←

XRA A AF Register 4 1 All
(CY=0)

[] [] []AAA ⊕←

XRA B A8 Register 4 1 All
(CY=0)

[] [] []BAA ⊕←

XRA C A9 Register 4 1 All
(CY=0)

[] [] []CAA ⊕←

XRA D AA Register 4 1 All
(CY=0)

[] [] []DAA ⊕←

XRA E AB Register 4 1 All
(CY=0)

[] [] []EAA ⊕←

XRA H AC Register 4 1 All
(CY=0)

[] [] []HAA .⊕←

XRA L AD Register 4 1 All
(CY=0)

[] [] []LAA ⊕←

XRA M AE Register
Indirect

7 1 All
(CY=0)

[] [] []LHMAA −⊕←

XRI data EE Immediate 7 2 All
(CY=0)

[] [] dataAA ⊕←

CMP A BF Register 4 1 All
CMP B B8 Register 4 1 All
CMP C B9 Register 4 1 All
CMP D BA Register 4 1 All
CMP E BB Register 4 1 All
CMP H BC Register 4 1 All
CMP L BD Register 4 1 All
CMP M BE Register

Indirect
7 1 All

CPI data FE Immediate 7 2 All

 97

CMA 2F --- 4 1 None [] []AA ←
CMC 3F --- 4 1 CY CYCY ←
STC 37 --- 4 1 CY 1←CY

The details of these instructions are given below:
 (a) Logical Instructions
 (i) ANA reg (AND register)

 where reg = A, B, C, D, E, H or L.
In this instruction each bit of the given register contents are ANDed with each bit

of the accumulator contents (bit by bit). The result is saved in the accumulator. It does not
affect the contents of the given register.

 [] [] []regANDAA ..←
The possible combinations of this instruction are:

 AND A
 ANA B
 ANA C
 ANA D
 ANA E
 ANA H
 ANA L
 The ANA reg instruction clears (resets) the CY flag and all other flags are
modified according to the data conditions of the result. This instruction is one byte
instruction.
 Let A = 73 H C = C3 H CY = 1
before the execution of the instruction ANA C. Then after the instruction is executed we
get:

 A = 0 1 1 1 0 0 1 1 CY = 1

 C = 1 1 0 0 0 0 1 1

 A = 0 1 0 0 0 0 1 1 CY = 0

 (ii) ANA M (AND Memory)
 In this instruction each bit of the data stored in the memory location
addressed by H-L register pair are ANDed with each bit of the accumulator contents (bit
by bit). The result is stored in the accumulator like ANA reg.
 [] [] []LHMANDAA −← ..
 Similar to ANA reg instruction data of the memory location addressed by
H-L register pair will not be affected; the carry flag will, however, be reset after the
execution of this instruction and other flags will be affected as per the data in the
accumulator.
 Let A = 19 H H = 25 H L = 00 H
 =2500M 37 H and CY = 1
before the execution of the instruction ANA M. Then after the instruction is executed we
get:

 98

 A = 0 0 0 1 1 0 0 1 CY = 1

 =2500M 0 0 1 1 0 1 1 1

 A = 0 0 0 1 0 0 0 1 CY = 0
 (iii) ANI data (AND Immediate)
 In this instruction each bit of the given data is immediately ANDed with
each bit of the accumulator contents (bit by bit). The result is stored in the accumulator.
The difference between ANA reg and ANI data instruction is that in ANA reg the data
given in the register where as in the ANI data instruction, the data is given with the
instruction itself.
 [] [] dataANDAA ..←
 The carry flag will be reset after the execution of this instruction and other
flags will be affected as per the result.
 For example, if A = AB H and CY = 1 before the execution of ANI 06 H, then
after the execution of this instruction we have:

 A = 1 0 1 0 1 0 1 1 CY = 1

 data = 0 0 0 0 0 1 1 0

 A = 0 0 0 0 0 0 1 0 CY = 0
 (iv) ORA reg (OR register)

where reg = A, B, C, D, E, H or L.
In this instruction each bit of the given register contents are ORed with each bit of

the accumulator contents (bit by bit). The result is saved in the accumulator. It does not
affect the contents of the given register.

 [] [] []regORAA ..←
The possible combinations of this instruction are:

 ORA A
 ORA B
 ORA C
 ORA D
 ORA E
 ORA H
 ORA L
 The ORA reg instruction clears (resets) the CY flag and all other flags are
modified according to the data conditions of the result. This instruction is one byte
instruction.
 Let A = 73 H C = C3 H CY = 1
before the execution of the instruction ORA B. Then after the instruction is executed we
get:

 A = 0 1 1 1 0 0 1 1 CY = 1

 B = 1 1 0 0 0 0 1 1

 A = 1 1 1 1 0 0 1 1 CY = 0

 99

 (v) ORA M (OR Memory)
 In this instruction each bit of the data stored in the memory location
addressed by H-L register pair are ORed with each bit of the accumulator contents (bit by
bit). The result is stored in the accumulator.
 [] [] []LHMORAA −← ..
 Similar to ORA reg instruction data of the memory location addressed by H-L
register pair will not be affected; the carry flag will however be reset after the execution
of this instruction and other flags will be affected as per the data in the accumulator.
 Let A = 19 H H = 21 H L = 00 H
 =2100M 37 H and CY = 1
before the execution of the instruction ORA M. Then after the instruction is executed we
get:

 A = 0 0 0 1 1 0 0 1 CY = 1

 =2100M 0 0 1 1 0 1 1 1

 A = 0 0 1 1 1 1 1 1 CY = 0
 (vi) ORI data (OR Immediate)
 In this instruction each bit of the given data is immediately ORed with
each bit of the accumulator contents (bit by bit). The result is stored in the accumulator.
 [] [] dataORAA ..←
 The carry flag will be reset after the execution of this instruction and other
flags will be affected as per the result.
 For example, if A = AB H and CY = 1 before the execution of ANI 16 H, then
after the execution of this instruction we have:

 A = 1 0 1 0 1 0 1 1 CY = 1

 data = 0 0 0 1 0 1 1 0

 A = 1 0 1 1 1 1 1 1 CY = 0
 (vii) XRA reg (Exclusive OR register)

where reg = A, B, C, D, E, H or L.
In this instruction each bit of the given register contents are XORed with each bit

of the accumulator contents (bit by bit). The result is saved in the accumulator. It does not
affect the contents of the given register.

 [] [] []regXORAA ..←
The possible combinations of this instruction are:

 XRA A
 XRA B
 XRA C
 XRA D
 XRA E
 XRA H
 XRA L

 100

 The XRA reg instruction clears (resets) the CY flag and all other flags are
modified according to the data conditions of the result. This instruction is one byte
instruction.
 Let A = 73 H D = C3 H CY = 1
before the execution of the instruction XRA D. Then after the instruction is executed we
get:

 A = 0 1 1 1 0 0 1 1 CY = 1

 D = 1 1 0 0 0 0 1 1

 A = 1 0 1 1 0 0 0 0 CY = 0
 (viii) XRA M (Exclusive OR Memory)
 In this instruction each bit of the memory location addressed by H-L
register pair are XORed with each bit of the accumulator contents (bit by bit). The result
is stored in the accumulator.
 [] [] []LHMXORAA −← ..
 The carry flag will be reset after the execution of this instruction and other
flags will be affected as per the data in the accumulator.
 Let A = 19 H H = 22 H L = 00 H
 =2200M 37 H and CY = 1
before the execution of the instruction ORA M. Then after the instruction is executed we
get:

 A = 0 0 0 1 1 0 0 1 CY = 1

 =2200M 0 0 1 1 0 1 1 1

 A = 0 0 1 0 1 1 1 0 CY = 0
 (ix) XRI data (Exclusive OR Immediate)
 In this instruction each bit of the given data is immediately XORed with
each bit of the accumulator contents (bit by bit). The result is stored in the accumulator.
 [] [] dataXORAA ..←
 The carry flag will be reset after the execution of this instruction and other
flags will be affected as per the result.
 For example, if A = AB H and CY = 1 before the execution of ANI 12 H, then
after the execution of this instruction we have:

 A = 1 0 1 0 1 0 1 1 CY = 1

 data = 0 0 0 1 0 0 1 0

 A = 1 0 1 1 1 0 0 1 CY = 0
 (x) CMA (Complement Accumulator)
 This is one byte implied addressing instruction as no operand is required
with the instruction. The execution of this instruction inverts each bit of the accumulator
contents and the result is saved in the accumulator. Basically it produces 1’s complement
of the accumulator contents. No flag is affected with this instruction.

 101

 [] []AA ←

 For example, if A = 0B H before the execution of CMA instruction, then after the
execution of this instruction we have:

 A = 0 0 0 0 1 0 1 1

 = 1 1 1 1 0 1 0 0

 A = 1 1 1 1 0 1 0 0 (F4)
(b) Compare Instructions
 (i) CMP reg (Compare Register)
 The contents of the given register are compared with the accumulator contents. In
fact the contents of the register are subtracted from the contents of accumulator and the
accumulator contents remain unchanged. However, as a result of the subtraction the flags
are modified as per the result.
 The zero flag Z is set if [] []regA = otherwise reset. Similarly, carry flag

CY is set if [] []regA < otherwise reset.
 The possible combinations of CMP reg are given below:
 CMP A
 CMP B
 CMP C
 CMP D
 CMP E
 CMP H
 CMP L
 To illustrate the above instruction let us consider the following assembly language
program.
 Label Mnemonics Operand
 MVI B, 00 H
 MVI A, 09 H
 LOOP INR B
 CMP B
 JNZ LOOP

 In this program before the loop A = 09 H and B = 00 H. The value of B will
increase by each go in the loop and each time it is compared with accumulator contents.
Till the contents of B register are not equal to the contents of Accumulator, the computer
will execute the instructions inside the loop. When the value of B register becomes equal
to 09 H, the zero flag will be set and it will allow coming out of the loop to execute the
next instructions.
 (ii) CMP M (Compare Memory)

 102

It is similar to CMP reg instruction with the difference that the contents of the
addressed memory location will be compared by the accumulator contents. The flags will
be modified as per the result.

(iii) CPI data (Compare immediate with data)

It is similar to CMP instruction with the difference that the data is directly given

with the instruction. In this instruction the given data is compared with the accumulator
contents. The flags will be modified as per the result.

(c) Miscellaneous Logical Instructions
 (i) CMC (Complement the carry)
 This instruction complements the carry flag.

 CYCY ←
 If CY = 1 before the execution of CMC instruction, the carry flag will be reset
(CY = 0) after the execution of this instruction. Similarly, If CY = 0 before the execution
of CMC instruction, the carry flag will be set (CY = 1) after the execution of this
instruction.
 In this only carry flag will be affected and all other flags will not be affected.
 (ii) STC (Set the carry)
 It sets the carry flag.
 1←CY
 The carry flag will be set (CY = 1) irrespective of the carry flag is set or reset
before the execution of this instruction STC.
 Only carry flag gets affected with this instruction.
4.2.4 Branch Group

This group of instructions changes the normal sequence of the program. The
branch instructions include JUMP, CALL and RETURN instructions, which are further
sub-divided as unconditional and conditional JUMP, CALL and RETURN instructions.

Table 4.4
Branch Group
Instruction Op.

Code
Addressing

modes
No of

T-
states

No of
bytes

of
instr .

Flags
affected

Operation

JMP addr C3 Immediate 10 3 None [] []addrPC ←
JNZ addr C2 Immediate 10/7 3 None [] []addrPC ← if Z=0.
JZ addr CA Immediate 10/7 3 None [] []addrPC ← if Z=1.

JNC addr D2 Immediate 10/7 3 None [] []addrPC ← if CY=0.
JC addr DA Immediate 10/7 3 None [] []addrPC ← if CY=1.
JM addr FA Immediate 10/7 3 None [] []addrPC ← if S=1.
JP addr F2 Immediate 10/7 3 None [] []addrPC ← if S=0.

JPO addr E2 Immediate 10/7 3 None [] []addrPC ← if P=0.
JPE addr EA Immediate 10/7 3 None [] []addrPC ← if P=1.
CALL addr CD Immediate 18 3 None Calls subroutine program.

 103

CNZ addr C4 Immediate 18/9 3 None Calls subroutine program if
Z=1.

CZ addr CC Immediate 18/9 3 None Calls subroutine program if
Z=0.

CNC addr D4 Immediate 18/9 3 None Calls subroutine program if
CY=1.

CC addr DC Immediate 18/9 3 None Calls subroutine program if
CY=0.

CM addr FC Immediate 18/9 3 None Calls subroutine program if
S=1.

CP addr F4 Immediate 18/9 3 None Calls subroutine program if
S=0.

CPO addr FE Immediate 18/9 3 None Calls subroutine program if
P=0.

CPE addr EC Immediate 18/9 3 None Calls subroutine program if
P=1.

RNZ C0 Register
indirect

12/6 1 None Returns to main program if
Z=1.

RZ C8 Register
indirect

12/6 1 None Returns to main program if
Z=0.

RNC D0 Register
indirect

12/6 1 None Returns to main program if
CY=0.

RC D8 Register
indirect

12/6 1 None Returns to main program if
CY=1.

RM F8 Register
indirect

12/6 1 None Returns to main program if
S=1.

RP F0 Register
indirect

12/6 1 None Returns to main program if
S=0.

RPO E0 Register
indirect

12/6 1 None Returns to main program if
P=0.

RPE E8 Register
indirect

12/6 1 None Returns to main program if
P=1.

(a) Unconditional Jump Instructions

 (i) JMP address (label) (Jump to Address)
 This is an unconditional jump instruction. With the execution of this
instruction, the program jump to the address (or label) specified with the instruction. This
is a three byte instruction and no flag is affected. In fact during the execution of JMP
address (label) instruction, the address of the label is copied in the program counter; and
whenever the program fetches the next instruction the program counter will send the
address of this given label.
 [] []LABELPC ←
 (a) Conditional Jump Instructions
 In conditional jump instructions the program jumps to the instructions specified
by the address (or label) if the given condition is fulfilled. However, if the given
condition is not satisfied, the program will not jump to the specified address (or label)

 104

rather it will proceed to the normal sequence. In all these conditional jump instructions, if
program jumps to the specified address after the given condition is satisfied, it will take
10 T-states for its execution otherwise it takes 7 T-states.
 Following are the conditional Jump instructions. Some of them have also been
used in SAP-II computers.
 (i) JNZ address (label) (Jump if the result is not zero)
 When this instruction is executed, the program jumps to the instruction specified
by the address (or label), if the result is not zero; otherwise it will proceed to the next
instruction. Here the result of the preceding instruction is considered.
 In this case the address (or label) is copied in the program counter if zero flag is
reset (Z = 0).
 [] LABELPC ← if Z = 0.
 This is illustrated if we consider the following instructions:
 Label Mnemonics Operand

 DCR C
 JNZ NEXT
 MOV A, M
 NEXT STA 2500 H
 HLT
 For the execution of JNZ instruction, the result of C-register will be considered. If
[] 0≠C (Z = 0), it will jump to the instruction (STA 2500 H) specified by the label NEXT,
otherwise it will jump to the next instruction (MOV A, M).
 (ii) JZ address (label) (Jump if the result is zero)
 The condition of this instruction is reverse to that of JNZ address. In this case the
program will jump to the instruction specified by the address (or label), if the result of the
preceding instruction is zero (Z = 1) otherwise it will proceed to the next instruction in
the normal sequence.
 The address of the label will be copied in the program counter if Z flag is set (or
result is zero).
 [] LABELPC ← if Z = 1.
 (iii) JNC address (label) (Jump if no carry)
 During the execution of this instruction, it will check up the Carry flag modified
by the preceding instruction. If there is no carry (CY = 0 or CY flag is reset), the program
will jump to the instruction specified by the address (or label) otherwise it will proceed to
the next instruction of the normal sequence.
 In this case the address of the label will be copied in the program counter if CY =
0 or CY is reset.
 [] LABELPC ← , if CY = 0
 (iv) JC address (label) (Jump if carry)
 The program will jump to the instruction specified by the address (label) if the CY
flag is set (CY = 1) which is modified by the preceding instruction. However, if the carry

 105

is reset (CY = 0), it will proceed to the next instruction of the normal sequence. The
condition of this instruction is opposite to that of the JNC address.
 In this case the address of the label will be copied in the program counter if CY =
1 or CY is set.
 [] LABELPC ← , if CY = 1

(v) JM address (label) (Jump if Minus)
When this instruction is executed, the program will jump to the instruction

specified by the address (label) if the result of the preceding instruction is minus or sign
flag is set (S = 1) otherwise it will proceed to the next instruction of the normal sequence.
 [] LABELPC ← , if S = 1

(vi) JP address (label) (Jump if Positive)
If the result of the preceding instruction is positive or sign flag is reset (S = 0), the

program will jump to the instruction specified by the address (label). However, if the
condition is not satisfied it will proceed to the next instruction of the normal sequence.
 [] LABELPC ← , if S = 0

(vii) JPO address (label) (Jump if Parity is Odd)
If the parity is odd or parity flag is reset (P = 0) as a result of the preceding

instruction, the program will jump to the instruction specified by the address (label)
otherwise next instruction of the normal sequence will be executed.
 [] LABELPC ← , if P = 0

(vii) JPE address (label) (Jump if Parity is Even)
If the parity is even or parity flag is set (P = 1) as a result of the preceding

instruction, the program will jump to the instruction specified by the address (label)
otherwise next instruction of the normal sequence will be executed.
 [] LABELPC ← , if P = 1
 (c) CALL Instructions

The call instructions allow calling the subroutine program. The address of the
subroutine program is specified with the CALL instruction. During the execution of
CALL instruction, the current contents of program counter are saved on the stack and the
address of subroutine (specified with the CALL instruction) is copied in the program
counter. Like the jump instructions, the CALL instructions are also of two types.

1. Unconditional Call Instructions
2. Conditional Call Instructions

1. Unconditional Call Instructions
CALL address (Calls the addressed subroutine program)

 This is the format for unconditional call instruction which is of three bytes. The
current contents of program counter are saved on the Stack and the address specified with
CALL instruction is copied in the program counter.
 i.e. [] []PCHSP ←−1

 [] []PCLSP ←− 2

 and [] addressPC ←
To illustrate the CALL address instruction, consider the following assembly

language program:

 106

 In this program LXI SP, 2500 H initializes the stack pointer (stack pointer is
represented by 2500 H.) i.e. the area or memory locations less than 2500 H will be used
for stack purposes. When the instruction CALL 2300 H is executed, the address of the
program counter will be 2109 H. The address of the program counter will be saved on the
stack. For this stack pointer will be decremented by 1 and the high byte of the program
counter (21 H) will be saved on to it; the stack pointer will further be decremented by 1
and lower byte of the program counter (09 H) will be stored on to it. The decremented of
the stack pointer will be current position of the stack. This is shown in figure 4.8.
 The address given with the CALL instruction i.e. 2300 H will be saved or copied
in the program counter.

Fig. 4.8

 The subroutine program ends at the instruction RET i.e. RET instruction will be
the last instruction of the subroutine program. The RET instruction takes the computer
back to the main program. The return saved (or pushed) on to the stack will be popped
back to the program counter. Further the data stored (or saved) at the top of the stack will
be copied as the lower byte of the program counter i.e.[] []SPMPCL ← . The program

 107

counter will now be incremented by one and data stored in new stack will be saved to
higher byte of the program counter i.e. [] []1+← SPMPCH .

 In the above program, after the execution of RET instruction PC = 2109 H.
2. Conditional Call Instructions

Similar to conditional jump instruction SAP-III computer has the following
conditional instructions.

(i) CNZ address (Call if not zero)
This instruction will call the subroutine program specified by the address

provided the zero flag is reset.
i.e. if Z = 0 or the result is not zero then
 [] []PCHSP ←−1

 [] []PCLSP ←− 2

 and [] addressPC ←
(ii) CZ address (Call if zero)
It will call the subroutine (specified by the address) if zero fags is set.

 i.e. if Z = 1 or the result is 1 zero then
 [] []PCHSP ←−1

 [] []PCLSP ←− 2

 and [] addressPC ←
(iii) CNC address (Call if no carry)
 This instruction will check the carry flag. If the carry flag is reset (or

CY=0) as per the executed preceding instruction, then the computer will call the
addressed subroutine program.
 i.e. if CY = 0 or there is no carry, then
 [] []PCHSP ←−1

 [] []PCLSP ←− 2

 and [] addressPC ←
(iv) CC address (Call if carry)
 The addressed subroutine will be called by the computer, there is a carry

(or carry flag is set ; CY = 1) as per the result of the preceding instruction.
 i.e. if CY = 1 or there is a carry, then
 [] []PCHSP ←−1

 [] []PCLSP ←− 2

 and [] addressPC ←
(v) CM address (Call if minus)
 During the execution of this instruction the sign flag will be checked. If

the result of the preceding instruction is negative or sign flag is set (S = 1), then only the
computer will call the subroutine program specified by the address.
 So if S = 1, then
 [] []PCHSP ←−1

 [] []PCLSP ←− 2

 and [] addressPC ←
(vi) CP address (Call if positive)

 108

 In this CALL instruction too the sign flag will be checked. If the result of
the preceding instruction is positive or sign flag is reset (S = 0), then the computer will
call the subroutine program specified by the address.
 So if S = 0, then
 [] []PCHSP ←−1

 [] []PCLSP ←− 2

 and [] addressPC ←
(vii) CPO address (Call if parity is odd)
 If the parity of the result of the preceding instruction is odd (or parity flag

is reset; P = 0), then the computer will call the addressed subroutine program.
 So if P = 0, then
 [] []PCHSP ←−1

 [] []PCLSP ←− 2

 and [] addressPC ←
(ix) CPE address (Call if parity is even)
 The computer will call the addressed subroutine program, if the parity of

the result of the preceding instruction is even (or parity flag is set; P = 1), then.
 So if P = 0, then
 [] []PCHSP ←−1

 [] []PCLSP ←− 2

 and [] addressPC ←
Return Instructions
 As already discussed, the last instruction of the subroutine program is RET
(Return instruction). This return instruction takes the computer back to the main program.
The return instructions may also be conditional. The following are the conditional return
instructions:
 RNZ Return if no zero
 RZ Return if zero
 RNC Return if no carry
 RC Return if carry
 RM Return if minus
 RP Return if positive
 RPO Return parity is odd
 RPE Return parity is even
 All the above return instructions are one byte instructions. If the specified
condition is satisfied, it will return to the main program; otherwise the execution of the
next instruction in the subroutine will be carried out. Further the return instruction will
pop the return address to the program counter.
 For example, we consider the instruction RNC.
 It will check the carry flag. Only if the carry flag is reset (CY = 0 or no carry), the
computer return to main program.
 i.e. if CY = 0 , then
 [] []SPPCL ←

 [] []1+← SPPCH

 109

4.2.5 Stack and Input / Output Instructions
 Stack is a portion of read/write memory, which is primarily used for saving return
address and data. As discussed earlier, in SAP-II computers, last two memory locations
of the read / write memory FFFF H and FFFE H are exclusively used for return address
of a subroutine call. In SAP-III computers, the programmer can specify any area of the
memory for the stack purposes. The portion of memory located chosen by the
programmer for the stack purposes can not be used for saving the return address of
subroutine call. For this purpose a 16 bit register called stack pointer is provided.

Table 4.5
Stack I/O Group

Instruction Op.
Code

Addressing
modes

No of
T-

States

No of bytes
of instr.

Flags affected Operati
on

LXI SP, addr 31 Immediate 10 3 None
PUSH B C5 Register

indirect
12 1 None

PUSH D D5 Register
indirect

12 1 None

PUSH H E5 Register
indirect

12 1 None

PUSH PSW F5 Register
indirect

12 1 None

POP B C1 Register
indirect

10 1 None

POP D D1 Register
indirect

10 1 None

POP H E1 Register
indirect

10 1 None

POP PSW F1 Register
indirect

10 1 None

IN Port DB Immediate 10 2 None
OUT Port D3 Immediate 10 2 None

The stack is initialized by the instruction given below:
 LXI SP, address (Load immediately the stack pointer)

 110

For example LXI SP, 2500 H will indicate the stack pointer as 2500 H as

 Fig. 4.9
shown in figure 4.9. So the memory locations lower than 2500 H may be used for stack
purposes i.e. the data or return addresses may be pushed to stack in the sequence
discussed earlier in CALL instructions.
 Following are the Stack instructions:
(i) Push Instructions

In the stack not only the return address of the main program during the execution
of CALL address instruction is pushed but also the contents of registers may also be
pushed to stack. For this following is the format of PUSH instructions:
 PUSH rp
 where rp stands for register pair. It may be
 B for B-C register pair,
 D for D-E register pair,
 H for H-L register pair,

PSW is known as program status word; it represents the
accumulator and the flag contents i.e. A F

 So we have the following PUSH instructions.
 PUSH B ; it pushes or saves the contents of B
 and C registers on the stack.
 PUSH D ; it pushes or saves the contents of D
 and E registers on the stack.

 PUSH H ; it pushes or saves the contents of H
 and L registers on the stack.

 PUSH PSW ; it pushes or saves the contents of
 accumulator (A) and F (flag)
 registers on the stack.
Following steps are carried out during the execution of PUSH rp instructions.

1. The stack pointer is decremented by one to get a new value of stack pointer as

SP-1.

 111

2. The contents of higher register of the given register pair (say B register in B-C
register pair.

i.e. [] []HSP rpM ←−1

3. The stack pointer is further decremented by one to get new value of stack pointer
as SP-2.

4. The contents of lower register (C register in B-C register pair) is saved in the
memory location specified by SP-2.

i.e. [] []LSP rpM ←−2

5. SP-2 will now be the stack pointer for other PUSH instructions.

 For example we have SP = 2500 H
 HL = 5678 H
 After the execution of PUSH H instruction 56 H will be loaded to memory
location 24FF H and 78 H will be loaded to 24FE H memory location as shown in figure
4.10.

Fig. 4.10

(ii) Pop Instructions
To retrieve the contents of registers from the stack, following POP instructions

are used.
 POP B ; where B stands for B-C register
 pair.
 POP D ; where D stands for D-E register
 pair.
 POP H ; where H stands for H-L register
 pair.

 POP PSW ; where PSW stands for Program

status word i.e. accumulator (A) and
F (flag) register.

 During the execution of POP instructions following steps are carried out.

 112

1. The byte stored in memory location addressed by stack pointer is saved in the
lower register of the given register pair (say C in B-C register pair). The contents
of higher register of the given register pair (say B register in B-C register pair.

i.e. [] []SPL Mrp ←

2. The stack pointer is incremented by one to get new value of stack pointer as
SP+1.

3. The contents stored in the memory location addressed by stack pointer (new value
as SP+1) is saved in higher register of the given register pair (B register in B-C
register pair).

i.e. [] []1+← SPH Mrp

4. The stack pointer is further incremented by one to get the new value of stack
pointer as SP+2 i.e. SP+2 will now work as stack pointer.

Suppose the data saved in stack is shown in figure 4.11. The stack pointer is
shown as 24FC H.

Let A = 01 H F = 00 H
 D = 12 H E = 6E H
before the execution of

POP PSW
and POP D instructions.
After the execution of these instructions we have the following data in the

registers.

 F = 59 H
 A = 24 H
 E = 36 H
 D = 9F H
 Now 2500 H will be the new value of stack pointer.

 Fig. 4.11

 It should be remembered that when a subroutine is called, it should save the
contents of any register being used in the main program using PUSH instruction in the
stack; and when it returns back to the main program form the subroutine program the

 113

contents of the register should be retrieved from the stack using POP instruction as
discussed above.
 The sequence of PUSH and POP instructions should be as:
 PUSH PSW
 PUSH D
 PUSH B
 PUSH H

 POP H
 POP B
 POP D
 POP PSW
 It should be noted that POP retrieve the data from the stack just in reverse order of
the data was PUSHed i.e. as Last In First Out (LIFO) method is used in the stack.
 PUSH and POP instructions may also be used in the main program. PUSH
instruction is used before the CALL instruction and POP (in the reverse order) after the
CALL instruction in the main program as given below:

Main Program:

 PUSH PSW
 PUSH H
 CALL LABEL
 POP H
 POP PSW

 In this program the contents of Accumulator, Flag, H and L registers are saved in
the Stack before the execution of CALL instruction. After the execution of subroutine
program the contents of the Accumulator, Flag, H and L registers are retrieved and next
instructions of the main program will be executed with restoration of earlier values of the
registers.
 Further, the PUSH and POP instructions may be used in the subroutine program
as given below. This is generally done when the CALL instruction is used may times.

Main Program:

 CALL LABEL

Subroutine Progam:

 114

 LABEL PUSH PSW
 PUSH D
 PUSH B

 POP B
 POP D
 POP PSW
 RET
Input / Output Instructions
 The input / output instructions deal with the input / output operations. These
instructions are same used in SAP-II computer.
 (i) IN Port (Inputs the data from the port)

 In this instruction the data available at the specified port address is moved to the
accumulator.
 [] dataA ← from port
 It is two byte instruction and no flag is affected after the execution of this
instruction. This instruction is basically used to read the data from the input devices such
as data read from key board, switches etc. during the computer run.

(ii) OUT Port (Outputs the data to the port)

 This two byte output instruction is used to send the contents of accumulator to the
specified port.
 []AOutput←
4.3 TIME DELAY INTRODUCED BY A REGISTER PAIR
 The time delay introduced by different registers has been discussed in the last
chapter using SAP-II instructions. The time delay can considerably be increased by using
a register pair. A 16-bit number may be taken in two registers (register pair).
 Consider the following subroutine assembly language program:
 Label Mnemonics Operand Comments

 LXI D, F424 H ;Loads DE register pair
 with a 16-bit number.
LOOP DCX D ;Decrements DE register

pair by one.
 MOV A, E ;Moves the contents of E

register to accumulator.
 ORA D ;ORing of the contents of

D and E registers are
performed to set the zero
flag.

 JNZ LOOP ;If result 0≠ jump to
loop

 RET ;Go back to main
program.

 Total T-states used for the above program are given as:

 115

 Mnemonics T-states
 LXI 10
 DCX 5
 MOV 5
 ORA 4
 JNZ LOOP 10/7
 RET 10
 24 T-states are used for the inner loop and 10+7+10 = 27 T-states are used for
outer loop.
 In this program the execution of loop is for 62500 times (as F424 H = 62500 10).
The condition for the check of zero flag can not be applied just after DCX instruction,
since no flag gets affected with this instruction. So to check the zero flag ORA instruction
affect the zero flag. The zero flag will be set if the contents of both D and E registers are
zero.
 The time delay introduced by the inner loop is:
 TLOOP = 62500 x 24 x Time of one T-state.
 If the system clock frequency is 3 MHz, then

 TLOOP = 62500 x 24 x
3

1
µsec

 = 500000 µsec
 = 0.5 sec.
 Delay introduced for outside loop is:

 Tout = 27x1x
3

1
µsec

 = 9 µsec
 So the total time delay introduced by the above subroutine program is given by:

 TDelay = 0.5 sec + 9 µsec
 5.0≈ sec
Example 4.1 What maximum delay can be introduced by the subroutine program using a
register pair? Let the system clock frequency is 3 MHz.
Solution. The subroutine program for the delay using a register pair is given as:

 Label Mnemonics Operand

 LXI D, FFFF H
LOOP DCX D
 MOV A, E
 ORA D
 JNZ LOOP

 RET
 The maximum delay can be introduced if the maximum number (FFFF H) is
taken in DE register pair.
 FFFF H = 65535 10

 So TLOOP = 65535 x 24 x
3

1
µsec + 27x1x

3

1
µsec

 = 524280+9 µsec

 116

 = 524289 µsec
 = 0.52 sec
Example 4.2 Write a program in assembly language to introduce a time delay of 1 sec
using a register pair. Let the system clock frequency is 3 MHz.
Solution. For one sec delay, the program discussed in section in 4.3 can be executed
twice as given below:
Main Program:

Label Mnemonics Operand
 MVI C, 02 H
LOOP1 CALL DELAY
 DCR C
 JNZ LOOP1
 HLT

Subroutine Program:
 Label Mnemonics Operand

DELAY LXI D, F424 H
LOOP DCX D
 MOV A, E
 ORA D
 JNZ LOOP

 RET
 In this program the subroutine program is run two times as subroutine program in
one go introduces a time delay of 0.5 sec.
Example 4.3 It is desired to clear the accumulator contents of a SAP-III computer.
Explain the possible instructions for this purpose.
Solution. To clear the accumulator contents, the possible instructions are:

(i) MVI A, 00 H Two byte instruction and no flag gets affected.
(ii) XRA A One byte instruction, CY flag will be reset and all
 other flags will be modified as per the result.
(iii) ANI 00 H Two byte instruction, CY flag will be reset and all
 other flags will be modified as per the result.
(iv) SUB A One byte instruction and all flags will be affected as

per the result.
Example 4.4 Write a program in assembly language using instructions of SAP-III
computers to complement the 256 bytes stored in memory locations 2500 H through
25FF H. Store the complemented data in memory locations starting at 2600 H.
Solution.

Label Mnemonics Operand Comments
 LXI H, 2500 H ;Loads the address of the

first number in H-L register
pair.

MVI C, FF H ; 256 bytes (FF H) is stored
in C-register as index
register.

 LOOP MOV A, M ;Moves the contents of
memory location addressed

 117

by H-L register pair to
accumulator.

 CMA ;complements the
accumulator contents.

 MVI H, 26 H ;Stores 26 H in H-register
 MOV M, A ;Complemented data is

stored in the destination
memory location.

 MVI H, 25 H ;Stores 25 H in H-register
 INX H ;Increments the H-L

register pair.
 DCR C ;Decrements the contents of

C register.
 JNZ LOOP ;Go back to loop for the

operation of next data.
 HLT
Example 4.5 Write a program in assembly language using instructions of SAP-III
computers to find the smaller of two numbers stored in memory locations 2501 H and
2502 H. Store the result in 2503 H memory location.
 Solution.

Label Mnemonics Operand Comments
 LXI H, 2501 H ;Loads the address of the

first number in H-L register
pair.

MOV A, M ;Saves the first number in
accumulator.

 INX H ;Increments the H-L
register pair.

CMP M ;compares the two
numbers.

JC NEXT ;if carry smaller number is
in accumulator go to
NEXT.

 MOV A, M ;If no carry then move the
smaller number to
accumulator.

 NEXT STA 2503 H ;Stores the smaller number
in 2503 memory location .

 HLT
Example 4.6 Write a program in assembly language using instructions of SAP-III
computers to add two hexadecimal numbers stored in memory locations 2501 H and
2502 H. The answer should be stored in 2503 H memory location. The carry if any
should be stored in 2504 H memory location.
Solution.

Label Mnemonics Operand Comments

 118

 LXI H, 2501 H ;Loads the address of the
first number in H-L register
pair.

MVI C, 00 H ;Clears C-register for carry
(most significant bit).

MOV A, M ;Saves the first number in
accumulator.

INX H ;Increments the H-L
register pair.

ADD M ;Adds the two numbers.
JNC NEXT ;if no carry go to NEXT.

 INR C ;Else increment the content
of C-register.

 NEXT STA 2503 H ;Stores the answer .
 MOV A, C ;Moves the contents of C

register (carry contents) to
accumulator

 STA 2504 H ;Saves the contents of
carry.

 HLT
Example 4.7 Write a program in assembly language for SAP-III computers to find the
sum of a series 1+2+3+……+10 (or sum of first 10 natural numbers).
 Solution. Label Mnemonics Operand Comments
 MVI B, 01 H ;Loads first number of series

to B-register.
MVI C, 00 H ;Clears C-register.

 LOOP MOV A, C ;Saves the contents of C-
register to accumulator.

ADD B ;Adds the contents of B-
register with the contents of
accumulator.

MOV C, A ;Saves the partial sum to C-
register.

 INR B ;increments the contents of
B-register.

 CPI 0B H ;Compares with natural
number 11.

 JNZ LOOP ;If not 11 go back to LOOP.
MOV A, C ;Saves the answer to

accumulator.
STA 2500 H ;Saves the answer to

memory location.
 HLT
Example 4.8 Reset all the flags, in a subroutine program, without performing arithmetic
or logical instructions. However the contents of other registers should not be changed.
Solution.

 119

Label Mnemonics Operand Comments
 PUSH H ;Saves the contents of H-L

register pair to stack.
PUSH PSW ;Saves the contents of A-F

to stack.
LXI H, 0000 H ;Loads 0000 H to H-L

register pair.
PUSH H ; Saves the contents of H-L

register pair to stack.
POP PSW ;Saves the contents of stack

in A-F registers.
POP H ; Retrieve the contents of

H-L register pair from the
stack.

 MOV A, H ;Moves the contents of H-
register to accumulator.

 POP H ;Pops the contents from
stack to H-L register pair.

 RET
Example 4.9 How will you exchange the contents of BC and HL register pairs?
Solution. Following program may exchange the contents of BC and HL register pairs:

Label Mnemonics Operand Comments
 LXI SP, XXX H ;Initializes the stack pointer.
 PUSH B ;Saves the contents of B-C

register pair to stack.
PUSH H ;Saves the contents of H-L

register pair to stack.
POP B ;Pops the contents of stack

(H-L register pair contents)
to B-C register pair.

POP H ;Pops the contents of stack
(B-C register pair contents)
to H-L register pair.

HLT
Example 4.10 Write a subroutine program using SAP-III instructions, which will
subtract the contents of D-E register pair from H-L register pair and the result is to be
stored in H-L register pair.
 Solution.

Label Mnemonics Operand Comments
 MOV A, L ;Transfer the contents of L

register to accumulator.
 SUB E ;Contents of E register are

subtracted from
accumulator contents.

 120

MOV L, A ;Answer (list significant
digit of the answer) is
loaded to L register.

MOV A, H ;Moves the contents of H
register to accumulator.

SBB D ;Subtracts the content of D
register from acc. with
carry.

MOV H, A ;Most significant digit of
the answer is saved in H
register.

HLT
Example 4.11 What will be the value of accumulator and flags (CY, S, P and Z), after the
execution of the following program.

 Label Mnemonics Operand
 MVI D, 7F H
 MVI C, 3E H
 MOV A, C
 RLC
 RLC
 ANA D
 HLT
Solution. After the execution of the above program we have:
 D = 0 1 1 1 1 1 1 1
 C = 0 0 1 1 1 1 1 0
 A = 0 0 1 1 1 1 1 0
After first RLC A = 0 1 1 1 1 1 0 0 CY = 0
After second RLC A = 1 1 1 1 1 0 0 0 CY = 0
ANDing of D = 0 1 1 1 1 1 1 1

The value of accumulator is A = 0 1 1 1 1 0 0 0 = 78 H
The values of Flag register are: CY = 0 (reset after ANDing)
 S = 0
 P = 1
 Z = 0
Example 4.12 Write a program using SAP-III instructions to check the even parity or the
odd parity of the number stored in memory location 2010 H. Send 00 H or EE H at the
output port 02 H if the parity is odd or even respectively.
 Solution.

Label Mnemonics Operand Comments
 LXI H, 2010 H ;Initializes the H-L register

pair with the address of the
location.

 MOV A, M ;Moves the number to
accumulator.

 121

 ORA A ;ORing of A with A will load
the same number to
accumulator. The parity flag
will be affected with this
operation.

 JPO ODD ;Jump to ODD if parity is
odd.

 MVI A, EE H ;Load EE H to accumulator
for even parity.

 OUT 02 H ;EE is sent to output port
02H.

 JMP END ;Jump to end.
 ODD MVI A, 00 H ;Load 00 H to accumulator

for odd parity.
 OUT 02 H ;00 is sent to output port 02H.
 END HLT
Example 4.13 (a) What will be the value of B-register after the following program is
executed.

 Label Mnemonics Operand Comments
 MVI A, 07 H
 STC
 CMC
 RAL
 MOV B, A
 STC
 CMC
 RAL
 STC
 CMC
 RAL
 ADD B
 MOVB, A
 HLT
(b) Suggest some alternative program that can perform the same operation.
 Solution. (a) In the beginning accumulator is loaded with a hexadecimal number 07 H.
 The instruction STC and CMC resets the carry flag and RAL instruction moves
the accumulator contents left through carry giving us the contents 0E H (=1410) i.e. STC,
CMC and RAL instructions multiplies the accumulator contents by a factor of two. The
accumulator contents are now saved in register B.
 Three instructions STC, CMC and RAL are further used twice so that accumulator
contents are multiplied by a factor of 4. This way after the third RAL in the program we
have A = 8 X 07 H = 38 H = 5610.
 After ADD B we get:
 A = 38 H + 0E H
 = 46 H
 = 7010

 122

 So this program multiplies the accumulator contents by a factor of 10 (decimal
number) which is stored in B-register.
 So B = 46 H
 = 7010
(b) The program given in (a) multiplies the accumulator contents by a factor of 10
(decimal number) which is stored in B-register. The following program also perform the
same operation.

Label Mnemonics Operand Comments
 MVI A, 07 H ;Loads 07 H to accumulator.
 ANI FF H ;It clears the carry flag.
 RAL ;Shifts left by one bit or

multiplies accumulator
contents by a factor or two.

 MOV B, A ;Moves the answer to B-
register.

 ANI FF H ;It clears the carry flag.
 RAL ;Shifts left by one bit or

multiplies accumulator
contents by a factor or two.
So A = 4 x A.

 ANI FF H ;It again clears the carry flag.
 RAL ;Shifts left by one bit or

multiplies accumulator
contents by a factor or two.
So A = 8 x A.

 ADD B ;[] [] []BAA +← So it gives
A = 10 x A

 MOV B, A ;Result is stored in B register.
 HLT
 This program does the same operation as given in (a), however, less number of
instructions is used in this program.
Example 4.14 A byte of data is stored in memory location 2500 H. Display at the output
port 02 H the number of 1’s present in the data byte stored in memory location 2500 H.
 Solution.

Label Mnemonics Operand Comments
 LDA 2500 H ;Loads the data byte in

accumulator.
 MVI C, 08 H ;08 H is loaded to C-register

to use it as a counter.
 MVI B, 00 H ; 00 H is loaded to B-register.
 LOOP RLC ;MSB is shifted to carry flag.
 JNC NEXT ;Checks the carry flag, if not

zero go to next (i.e. no 1 is
present at the MSB).

 INR B ;Increments the B-register by
one.

 123

 NEXT DCR C ;Decrements C-register.
 JNZ LOOP ;Jumps to LOOP if Z = 0.
 MOV A, B ;No. of 1’s present is loaded

to accumulator.
 OUT 02 H ;Sends the data to the output

port.
 HLT

 PROBLEMS
1. Give the programming model (Software model) of SAP-III computers.
2. How many flags are used in SAP-III computers? How are these flags affected

with the result?
3. Explain with the help of block diagram how the carry flag gets affected with the

result.
4. In how many groups the instruction set of SAP-III computers are classified.

Explain with examples the instructions of arithmetic group.
5. Discuss the rotate instructions used in SAP-III computers. How the flags are

affected with these instructions.
6. What is the difference between the stack and stack pointer? Discuss PUSH and

POP instructions.
7. Explain what operations are performed when the following instructions are

executed. Give at least one example for each operation.
(i) LXI H, address
(ii) ADD M
(iii) CMP reg

8. What is difference between CMP reg and SUB reg instructions? Explain with
suitable examples.

9. If carry flag is zero, then show that RAL instruction produces a multiplication of
accumulator contents by a factor of 2.

10. If carry flag is zero, then show that RAR instruction produces a division of
accumulator contents by a factor of 2.

11. Show that the instruction DAD H shifts left the data in H-L register pair by one
bit.

12. Discuss various addressing modes of SAP-III computers instructions and give at
least two examples of each addressing mode.

13. What do you understand by subroutine? Explain the use of stack and stack pointer
in calling a subroutine. Explain any other use of stack.

14. Write a program for SAP-III computers introduce a time delay of 0.5 sec if the
system clock frequency is 6 MHz.

15. Explain the following instruction of SAP-III computer. Also discuss which flags
get affected with the execution of these instructions.

 ADD M, CMP B, POP PSW and MOV A, M.
16. An ORA reg or ORI data instruction can be used to make a selected bit of a

specified register as 1. Justify this statement. Also write the mnemonic of an
instruction that will set bit 6 of the accumulator without changing any of the other
bits in the register. (Ans.: ORI 40 H)

 124

17. What will be contents of accumulator and flags (CY, S, P and Z), after the
execution of ADD D instruction; if A = C3 H and D = 3D H.

 (Ans: A= 00 H, CY = 1, S = 0, P = 1 and Z = 1)
18. What will be contents of accumulator and flags (CY, S, P and Z), after the

execution of SUB D instruction; if A = C3 H and D = 3D H.
 (Ans: A= 85 H, CY = 0, S = 1, P = 0 and Z = 0)
19. What will be contents of memory location 2500 H and flags (CY, S, P and Z),

after the execution of the following program:
 MVI C, C8 H
 MVI A, 11 H
 ADD C
 STA 2500 H
 HLT
 (Ans: 2500M = D9 H, CY = 0, S = 1, P = 0 and Z = 0)

20. What will be the value of stack pointer, after the following program written in
SAP-III instructions is executed.

 LXI SP, 27FF H
 PUSH D
 CALL SUBROUT
 POP D
 ADD D
 PUSH D
 HLT
 What will be the value of stack pointer after this program?

 (Ans: SP = 27FD H)
21. What will be the contents in B-register, after the execution of the following

assembly language program?
Label Mnemonics Operand

 MVI A, 08 H
 STC
 CMC
 RAL
 MOV B, A
 HLT
 (Ans.: B = 10 H = 1610)

 5
The 8085 Microprocessor

 After the study of conceptual computers SAP-I, SAP-II and SAP-III, we are now
in the position to understand the fundamentals of 8-bit microprocessor 8085. As
discussed in the preceding chapters, the basic components of all the computers are
Keyboard, Display devices, Memory devices and Central Processing unit. The central
processing unit (CPU) is the heart of the computer and also called microprocessor.

The technological revolution brought in recent years, the invention of micro-
programmable computer on microprocessor chip. First four bit microprocessor chip
INTEL-4004 was developed by Intel Corporation of America in 1971. Intel introduced in
1972 an 8-bit microprocessor 8008 and in 1973 another 8-bit microprocessor 8080. The
microprocessor 8080 was the most popular microprocessor of the early 70s. In the year
1974, Intel developed a 40 pin microprocessor chip 8085, which was the enhanced
version of 8080. Intel 8080 microprocessor was not in fact a complete CPU on a chip
because the clock and controller were on separate chip. Further, it utilizes two separate
power supplies. The 8085 microprocessor has the advantages over 8080 that it has on-
chip clock and control circuit. It needs only one power supply of +5 volts.

5.1 ARCHITECTURE OF 8085 MICROPROCESSOR
 Intel 8085, an 8-bit NMOS microprocessor is available in the form of 40 Pin dual
in line IC package. It is fabricated on a single LSI chip. It operates on +5 V d.c. supply.
The clock speed used in this microprocessor is about 3 MHZ. General Purpose 8-bit
microprocessor is capable of addressing up to 64 K bytes (i.e. 65536216 = bytes) of
memory. The functional block diagram is shown in figure 5.1.

The main functional components of 8085A microprocessor are as given below:
 (i) Register Section
 (ii) Arithmetic and Logic Unit
 (iii) Timing and Control Section
 (iv) Interrupt Control
 (v) Serial Input / Output Control

 126

 Fig. 5.1

 127

5.1.1 Register Section
 The 8085 microprocessor contains eight addressable 8-bit registers namely:
 A (Accumulator) register
 F Flag register (Flag flip-flops)
 B register
 C register
 D register
 E register
 H register
 L register

 Out of these registers B, C, D, E, H and L registers are 8-bit general purpose
registers. These registers can either be used as single register or a combination of two
registers as 16 bit register pair. As discussed in SAP-III computers, the valid register
pairs are B-C, D-E or H-L register pairs. The higher order byte of 16 bit data is stored in
first register (B in B-C register pair), and low order byte in the second register (C in B-C
register pair).
 The H-L register pair can also be used for register indirect addressing; since this
register pair can also function as data pointer.
 The large number of general purpose registers gives more flexibility and ease in
the programming. However, the general purpose registers are limited as registers occupy
more space on the silicon chip.
 Beside these general purpose registers, the 8085 has remaining two 8-bit registers
Accumulator (A) and Flag (F) as special purpose registers and two 16 bit registers
namely Program counter (PC) and stack pointer (SP).
Accumulator (A)
 As discussed in preceding chapters, accumulator is a 8 bit buffer register
extensively used in arithmetic, logic, load and store operations as well as in input / output
instructions. All the arithmetic and logical operations are performed on the accumulator
contents; i.e. one of the operand is always taken into the accumulator.
Flag (F) Register
 It is an 8-bit register associated with the execution of instructions in the
microprocessor. Out of the 8 bits of flag register, 5 bits contains significant information
in terms of status flags. The five flags are:

(i) Sign flag (S)
(ii) Zero flag (Z)
(iii) Carry flag (CY)
(iv) Parity flag (P)
(v) Auxiliary Carry flag (AC)

All the flags except the Auxiliary carry (AC) flag have been discussed in SAP-III
computers.

 128

The bit positions reserved for these flags in the flag register (F) is shown in figure
5.2.

Fig. 5.2

(i) Sign flag (S) The sign flag is set (S = 1), if the result of the operation of
the instruction is negative (MSB of the result is 1); otherwise
it is reset (S = 0) for the positive result (MSB is zero).

(ii) Zero flag (Z) The zero flag is set (Z = 1) if the result of the operation of the

instruction is zero otherwise this flag is reset (Z = 0).
 i.e. Z = 1 if the result is zero,
 and Z = 0 if the result is not zero.

(iii) Carry flag (CY) The carry flag is set to 1, if there exist a carry (or borrow) to

the highest order bit (non-existent 9th position) as a result of
the execution of addition or subtraction instructions. If there
is no carry (or borrow) to the higher order bit, the carry flag
is reset.

 i.e. CY = 1 if there is a carry to the highest order bit (or
overflow), and CY = 0 if there is no carry to the highest order
bit (or no overflow).

 129

(iv) Parity flag (P) After an arithmetic and logic operation, if the result has even
number of 1s, then parity bit is set. If on the other hand the
result has odd number of 1s, the parity flag is reset.

 i.e. P = 1, if the result has even number of 1s,
 and P = 0, if the result has odd number of 1s.

(v) Auxiliary carry (AC) This is a new flag in 8085 microprocessor. This flag (AC) is

set to 1, if there is an overflow at bit 3 of the accumulator.
AC flag is used in BCD arithmetic. This is illustrated as
given below:

 As shown in figure 5.2, the five bits in flag register are defined. The three bits are
undefined. The Accumulator and 8 bits (including three undefined bits) of flag register
form a Program Status Word (PSW). The accumulator and flag registers are treated as a
16 bit unit for stack operation.
Program Counter – 16 bit register
 The program counter is a 16 bit register. It is used to send 16 bit address to fetch
the instruction from the memory. It acts as a pointer which indicates the address of the
next instruction to be fetched and executed. The program counter is updated after an
instruction has been fetched by the processor. If an instruction is one byte instruction,
then the program counter will be updated by one (i.e. PC = PC + 1). Similarly, for two
and three byte instructions, the program counter will be updated by two (i.e. PC = PC +
2) or three (i.e. PC = PC + 3) locations respectively.
Stack Pointer – 16 bit register
 The stack is an area of RAM (random access memory or read / write memory) in
which temporary information is stored. It is stored on First-In-Last-Out (FILO) basis. An
address in the RAM area is assigned to the stack pointer where the first information is
stored as the first stack entry. This is done by initializing stack pointer by an instruction.
Higher stack entries are made at the progressively decreasing addresses.
5.1.2 Address Buffer and Address-Data Buffer
 It has already been discussed that 8085 requires 8-bit data bus and 16-bit address
bus, as the memory address is of 16 bits. More number of IC pins are required if separate
address and data bus are introduced. To restrict the number of pins of 8085 to only 40,
lower address lines A0-A7 and data lines D0-D7 are used in multiplexed mode. The
multiplexed lines are designed as Address/Data Bus (AD0-AD7). So whenever 16-bit
address is transmitted by the microprocessor 8 MSBs of the address lines are sent on the
Address Bus (A15-A8) and 8 LSBs of the lines are sent on the Address/Data Bus (AD7-
AD0). The 8 LSBs of the address are then latched either into memory or external latch so
that the complete address remains available for further operation. The 8-bit Address/Data
Bus will now be free for the data transmission.

5.1.3 Arithmetic and Logical Unit (ALU)

 130

 The arithmetic and logical unit (ALU) basically consists of accumulator (A), flag
register (F) and a temporary register (which is inaccessible by the programmer or user).
This unit carries out the arithmetic and logic calculations of the data stored in general
purpose registers or in memory locations. The arithmetic operations are ADD, SUB,
compare, increments, decrements and complements etc.; while logical operations are
AND, OR, XOR and Rotate. The result of these operations could be placed in the
accumulator or elsewhere through the internal bus. Arithmetic operations are usually
carried out in 2’s complement adder / subtrator discussed in the preceding chapter. For
these operations, ALU receives the control signals from the timing and control unit.
5.1.4 Timing and Control Unit
 This unit consists of the following sections:

1. Instruction Register and Decoder
2. Control signals

1. Instruction Register and Decoder
 As discussed in the preceding chapter, the CPU fetches an instruction from the
memory for its execution. This instruction can be of 1-3 byte long. The first byte contains
the op code of instruction which basically specifies the nature of operation to be
performed indicating the length of the instruction. The first byte (op code of the
instruction) transferred to 8-bit instruction register through the internal bus of the CPU,
becomes available at the instruction decoder. The decoder decodes the op code and
directs the control unit to produce the necessary control signals.
2. Control Signals
 Following are the control signals of 8085 microprocessor needed for the operation
of CPU.
(i) X1, X2 and CLK Out
 Two pins X1 and X2 are provided to be externally connected to a quartz crystal.
The clock signal of fixed frequency is generated through the internal circuitry of the
processor. The frequency at which the microprocessor 8085 works is half of the crystal
frequency. The quartz crystal of 6.144 MHz is used in this processor. This gives the clock
frequency of 3.072 MHz (half of the crystal frequency) of 50% duty cycle. The clock
period is of about 320 nsec. The output of the clock frequency is also available at CLK
out terminal.
(ii) Address Latch Enable (ALE)
 The 16 bit address bus is basically divided into two sets. The most significant bits
A7-A15 of the address bus are used separately and the least significant bits of the address
AD0-AD7 are time multiplexed with the bits of bidirectional data bus (D0-D7). The AD0-
AD7 bus serves the dual purpose as they can be used as low-order address bus as well as
bidirectional data bus at different times. This is used as address bus, during the first clock
cycle of the machine cycle involving memory; and during the remaining clock cycle of
the machine cycle, it acts as the data bus. This is accomplished by address latch enable
(ALE) signal provided in the processor. During the first clock cycle of the machine cycle
ALE is high which enables the lower 8-bit of the address to be latched either into the
memory or external latch.

(iii) DR (Read) Signal

 131

 This is an active low signal to be connected to memory read input (output enable
signal to memories) or to input / output read signal to enable input / output buffer.

(iv) RW (Write) Signal

 Similar to read signal (DR), write signal (RW) is also active low. This signal is
used to write to the memory or input / output devices.

(v) MIO/ (Input Output / Memory)
 This signal MIO/ distinguishes that the address and data is meant for either I/O
devices or memory. Whenever this signal is high (1), microprocessor will communicate
to the I/O devices and whenever it is low (0), microprocessor will communicate to the
memory.
(vi) Status Signals (S0, S1)
 The status signals (S0, S1) along with MIO/ signal indicate the type of machine
cycle in progress. The type of machine cycle are op code fetch cycle, memory read cycle,
memory write cycle, I/O read cycle or I/O write cycle.
 Various types of status codes are given in table 5.2.

Table 5.2
Machine Cycle MIO/ S1 S0

Op code fetch Cycle
Memory Read Cycle
Memory Write Cycle
I/O Read Cycle
I/O Write Cycle
INTR Acknowledge
Halt

0
0
0
1
1
1

Hi-Z

1
1
0
1
0
1
0

1
0
1
0
1
1
0

(vi) Hold and HLDA
 HOLD and HLDA (Hold Acknowledge) signals are used for DMA (Direct
Memory Access) operation. In a microprocessor, the data transfer between I/O devices
and memory will take place through the microprocessor. The involvement of the
processor slows down the data transfer between I/O devices and memory. The transfer of
data directly from I/O devices to memory without involvement of microprocessor is
called DMA. The DMA will save the time as CPU relinquishes the control of Buses. In
this way DMA transfers the large amount of data in a relatively short time. The HOLD
and HLDA signals are used in the operation. Whenever HOLD signal is high, CPU
temporarily relinquishes its operation by floating the address, data and control buses; and
DMA operation is started. A high HLDA (Hold Acknowledge) signal is also sent to
DMA controller, indicating that CPU has received the hold request. Whenever the data
transfer is complete, then the control to CPU is returned back by sending a HOLD signal.
Further the HLDA signal goes low.
(viii) READY signal (Input)
 Some peripheral devices connected to 8085 microprocessor operate at much
slower speed than the processor. To synchronize the speed of CPU and peripheral devices
or to slow down the speed of 8085, the READY signal is used. If the READY signal is
high the peripheral device is ready and the processor can complete the data transfer. If

 132

this signal is low the microprocessor waits (by generating a number of NOP T-states) till
it goes high.

(ix) and RESET OUT

 The signal may be low from the operator Reset button or from the
processor. When the signal is low, the CPU will reset the program counter, instruction
register and other circuits. It also sends a high RESET OUT. The RESET OUT signal

goes to peripheral devices to reset or initialized. When signal goes high and
RESET OUT goes low, the data processing may begin.
5.1.5 Interrupt Control
 Sometimes it is necessary to interrupt the execution of the main program. For this
an interrupt request is obtained from the I/O devices. After receiving the interrupt request
(INTR), processor temporarily stops what it was doing and attends to the I/O device.

INTA is an interrupt acknowledge signal which is sent by the microprocessor after INTR
signal is received. After the work of the I/O device is complete it returns to what it was
doing earlier.
 Basically 8085A has five hardware interrupts namely:
 INTR
 RST 5.5
 RST 6.5
 RST 7.5
 and TRAP

If two or more of these interrupts are active at the same time, the 8085 takes them
in order of priority level. The priority levels of these interrupts are given in table 5.3.

Table 5.3

Interrupts Priority
TRAP

RST 7.5
RST 6.5
RST 5.5
INTR

1
2
3
4
5

The details of these instructions will be discussed in chapter 7.
5.1.6 Serial I/O Control
 Serial input / output control circuit incorporated in this microprocessor is used for
the data transmission. For this purpose two pins SID and SOD are provided in the serial
input/output control unit. The SID (Serial Input Data) terminal receives the serial data
stream from an input device, the control unit converts serial data stream to parallel data
before it is used by the computer. After the conversion 8-bit parallel data is stored in the
accumulator. Similarly, SOD (Serial Out Data) terminal outputs the 8-bit parallel
available with the accumulator into serial form to the peripheral device connected with
the computer.
5.2 PIN DESCRIPTION OF 8085

 133

 The pin details and logical schematics of the 40 pin dual line package (DIP) IC
8085 are shown in figures 5.3(a) and (b) respectively. Fig. 5.3 (c) shows the shape of the
microprocessor. The descriptions of various pins of the microprocessor are given below:

Fig. 5.3 (a)

 134

Fig. 5.3 (b)

Fig. 5.3 (c)

 135

PIN NOS. 1 and 2:

 These X1 and X2 pins are to be connected to an external quartz crystal, L-C or R-C
network which drives the internal clock generator. The clock signal of appropriate
frequency is determined when a quartz crystal is connected to the on-chip oscillator as
shown in figure 5.4(a). The oscillator output from the Schmitt trigger drives a flip-flop
which divides the frequency by a factor of two. The circuit produces two clock signals

Φ1 (CLK) and Φ2 (CLK) to derive the internal circuit of the microprocessor. A 6.25
MHz crystal is used to provide 3.125 MHz internal clock frequency.
 Generally, quartz crystal is used for the On-chip oscillator for the accurate and
stable clock frequency, though a parallel resonant L-C circuit may be used for the
frequency determining network as shown in figure 5.4(b). The network produces a signal
whose frequency tolerance is about %10± . The component values may be chosen from
the following formula:

)(2

1

inCCL
f

+
=

π

 The input capacitance Cin is approximately 15 Pf. To minimize the variations in
frequency, it is recommended to choose C as 30 Pf.

Fig. 5.4(a)

 136

 Fig. 5.4 (b) Fig. 5.4 (c)
 An R-C network may also be used as the frequency determining network for the
on-chip oscillator of the microprocessor as shown in figure 5.4(c). The driving frequency
generated by this circuit is approximately 3MHz. It is not recommended to use the
frequencies higher or lower than this.
PIN NO. 3
 This is RESET OUT signal, which indicates that CPU is being reset. When it is
high, system is reset. The signal is synchronized to the processor clock and lasts for an
integral number for clock periods. When the RESET OUT signal goes low, the
processing begins.
PIN NOS. 4 and 5
 Pin Nos. 4 and 5 indicate SOD (Serial Out Data) and SID (Serial In Data)
terminals respectively. These pins are associated with Serial Input/Output control unit for
8085 microprocessor. As already discussed these pins are used for the serial data
transmission. The SOD output pin can deliver a serial data stream to a peripheral device.
On executing SIM (Set Interrupt Mask) instruction, if bit D6 is set to 1, the content of D7
bit (set or reset) of the accumulator is latched on the SOD pin as shown in figure 5.5(a).

 137

Fig. 5.5 (a)

 The data on the SID line (PIN 5) loads into accumulator at bit D7 whenever a RIM
instruction is executed as shown in figure 5.5(b).
 The details of SIM and RIM instructions will be discussed in chapter 7.

Fig. 5.5 (b)

PIN NOS. 6 to 11

 138

 The interrupt control unit of the microprocessor contains these pins. The Pins 6 to
11 are restart interrupts named as:
 TRAP (Pin No.6) I Priority
 RST 7.5 (Pin No. 7) II Priority
 RST 6.5 (Pin No. 8) III Priority
 RST 5.5 (Pin No. 9) IV Priority
 INTR (Pin No. 10) V Priority
 The TRAP has the highest priority and INTR has the lowest priority. The priority
level is of importance if two or more interrupts become active at the same time. The
TRAP is non-maskable interrupt. It is both edge and level sensitive.
 The interrupts (TRAP, RST 7.5, RST 6.5 and RST 5.5) are also called vector
interrupts, as each interrupt has fixed memory location (vector location) for the transfer
of control from the normal execution of the routine. The vector locations of these
interrupts are given in table 5.4. As soon as any of these pins 6 to 10 are active (high), the
internal circuit of 8085 stops the normal execution of program and the program control is
transferred to the corresponding memory location (vector location).

Table 5.4
Interrupts Memory locations

TRAP
RST 7.5
RST 6.5
RST 5.5

0024 H
003C H
0034 H
002C H

 INTR (Pin No. 10) is a general purpose interrupt and has the lowest priority. As
soon as Pin No. 10 is high, the microprocessor stops the execution of normal program
and after completing the instruction at hand, it goes to CALL instruction. The INTR is
enabled or disabled by the instructions ET (Enable Interrupts) or DI (Disable Interrupts)
respectively.

 The Pin No. 11 is an Interrupt Acknowledge (INTA) signal. A low (logic 0) to
this pin indicate that the microprocessor has acknowledged the request from the
peripheral device. It is also used to activate the interrupt controller.
PIN NOS. 12 to 19
 Pin Nos. 12 to 19 (AD0-AD7) form bi-directional multiplexed Address/Data Bus.
The least significant 8 bits of the memory address (or I/O Address) appear on the bus
during the first T-states of a machine cycle. It then becomes the data bus during the next
T-states.
PIN NO. 20
 Pin No. 20 is the ground terminal.
PIN NOS. 21 to 28
 The Pin Nos. 21 to 28 (A8-A15) form unidirectional most significant 8 bits of
memory address or 8 bits of the I/O address. It remains in the high impedance state
during HOLD, HALT and RESET modes.
PIN NOS. 29 to 33

 139

 The Pin Nos. 29 to 33 labled as S0 and S1 respectively are known as status signals.

These status signals along with MIO/ signal indicate the various operations as indicated
in table 5.5.

Table 5.5
Machine cycle MIO/ Status

S1 S0
Control signals

Op code Fetch

0

1 1

0RD =

Memory Read

0

1 0

0RD =

Memory Write

0

0 1

0WR =

I/O Read

1

1 0

0RD =

I/O Write

1

0 1

0WR =

Interrupt Ack.

1

1 1

0INTA =

HALT

HI-Z

0 0

HOLD

HI-Z

X X

RD , Z=WR

RESET

HI-Z

X X 1INTA =

 HI-Z = High Impedance State
 X = Unspecified
PIN NO. 30
 The Pin No. 30 is known as ALE (Address Latch Enable) terminal. When this
signal is high the information carried on the multiplexed address/data bus (AD0-AD7) is
the lower 8 bits of the address. It also enables the low order address (AD0-AD7) from the
multiplexed address/data bus to latch either into the memory or the external latch. The
ALE signal separates the low order address and data from the multiplexed Address/data
Bus. This is illustrated in figure 5.6.

 140

Fig. 5.6

PIN NOS. 31, 32 and 34
 The Pin Nos. 31 and 32 are the two control signals WR (Write bar) and RD

(Read bar) respectively. The pin 34 carries MIO/ signal which is one of the status

signals. The other status signals are S0 and S1 discussed earlier. A low WR signal
generated by the microprocessor sends (writes) data into I/O devices or memory.
Similarly, a low RD signal generated by the microprocessor reads (receives) the data

from the I/O devices or memory locations. The MIO/ signal indicates whether the
address on the address bus is meant for I/O devices. However, a low to this signal
indicates that the address on the address bus is meant for memory location. The

RD, WR and MIO/ signals function together.
PIN NO. 35

 141

 The Pin No. 35 is known as READ signal which forces the microprocessor to wait
till the data become available from the memory or input/output devices. This signal is
needed to synchronize the speed of the microprocessor with I/O devices or memory as the
memory or I/O devices are not as fast as the microprocessor. When the READ signal is
low, the microprocessor waits till the READY signal is 1. As soon as READY signal is 1,
the microprocessor knows that the data are available from the memory or I/O devices.
PIN NO. 36

 This pin is signal. This input carrying signal may be operated by the
operator using the RESET button provided externally or it may be operated directly from
the other source. When this signal is low (momentarily), the CPU will reset the program
counter, instruction register, all interrupts (except TRAP) are disabled, SOD signal
becomes low and Data, address and control buses are floated. When this signal goes high,
the data processing begins.
PIN NO. 37
 This pin carries CLK OUT signal. It is derived from the on-chip oscillator, which
goes to peripherals to synchronize their timings.
PIN NOS. 38-39
 The Pin Nos. 38 and 39 are the HOLD and HLDA (Hold Acknowledge) signals
respectively. These signals are used in DMA (Direct Memory Access) operations. As
shown in figure 5.7, when any I/O device indicates that the data are ready for DMA
transfer, a high HOLD signal is sent by the DMA controller to the 8085 microprocessor.
It is in fact a request signal from the DMA controller to the microprocessor. The
microprocessor then sends a high signal to DMA controller indicating that the
microprocessor has received the request from the I/O devices and will relinquish the
address, data and control bus after completing the current instruction. The DMA
controller thus carries out the data transfer. A low HOLD signal will return the control to
the microprocessor.

 142

Fig. 5.7

PIN NO. 40
 The pin 40 is +VCC, which is to be externally connected to +5 volt d.c. supply.
5.3 INSTRUCTION SET OF 8085 MICROPROCESSOR
 The 8085 includes all the instructions of SAP-III. In addition there are few more
instructions which will be discussed below. These new instructions were not considered
in SAP-3 because of its architecture.
LHLD address (Loads the H-L pair direct)

This instruction loads the H-L pair direct with two bytes already stored in two
consecutive memory locations starting at the specified memory address. The contents
stored in the memory location whose address is given with the instruction will be loaded
to the L-register; and the contents stored in the next memory location (address + 1) will
be loaded to the H-register.
 i.e. [] []addressML ←

 and [] []1addressMH +←

 For example, let 2A H is stored in the memory location 2100 H and 2B H is
stored in the memory location 2101 H, then after the execution of the instruction LHLD
2100 H , the L-register will have 2A H and H-register will have 2B H.
 None of the flags is affected with this instruction.
SHLD address (Stores the H-L pair direct)

This instruction does the reverse operation of LHLD. The instruction SHLD
address stores the contents of L-register to memory location whose address is given with
the instruction; and the contents of H-register are stored in the next consecutive memory
location (address + 1).

 143

i.e. [] []LM address ←

 and [] []HM 1address ←+
No flag is affected with this instruction too.

 For example, if [] =L 3A H and[] =H 3B H, then after the execution of the
instruction SHLD 2200 H will result.

[] AH 3M 2200 ←

 and [] BH 3M 2201 ←
LDAX rp (Loads the Accumulator Indirect)
 This instruction loads the accumulator, the contents already stored in the memory
location addressed by the register pair (rp). Here rp represents B-C or D-E register pair.
The H-L register pair is not included in this instruction.
 i.e. [] []rpM←A

 The possible combinations of the instruction are:
 LDAX B
 LDAX D
 No flag is affected with the execution of this instruction.
 For example, if [D] = 25 H, [E] = 00 H
 and M2500 H = 34 H,
 then after the execution of the instruction LDAX D, the accumulator will have:
 [] []H2500M←A
 i.e. A = 34 H

 It is worth while to mention that the instruction LDAX H does not exist, because
the contents stored in the memory location addressed by H-L register pair may be loaded
to accumulator by the instruction MOV A, M.
STAX rp (Stores the Accumulator Indirect)

 The STAX rp instruction does the reverse operation of LDAX rp. This instruction
stores the accumulator contents in the memory location addressed by the register pair
(rp). Here too rp represents B-C or D-E register pair. The H-L register pair is not included
in this instruction.
 i.e. [] []A←rpM

 The possible combination of this instruction are:
 STAX B
 STAX D
 No flag is affected with the execution of this instruction.
 For example, if B = 21 H, C = 00 H
 and A = 3A H,
 then after the execution of the instruction STAX B, 3A H will be stored in the
memory location 2100 H.
 i.e. [] AH3M H2100 =

 The combination STAX H is not included in this instruction as MOV A, M
performs the same operation.

 144

XCHG (Exchange the contents of H-L register with D-E register)
 This is one byte instruction and no operand is needed with it. It exchanges the
contents of H and L register with D and E registers respectively.
 i.e. [] []DH ↔ and [] []EL ↔
 For example:
 If H = 25 H , L = 32 H
 and D = 12 H, E = 1B H
 then after the execution of XCHG instruction, we have:
 H = 12 H, L = 1B H
 and D = 25 H, E = 32 H
 The instruction XCHG is generally used to keep track of more than one memory
location at a time without using LDAX and STAX instructions.
 Let us write a program to add two numbers stored in memory locations 2100 H
and 2201 H without using LDAX and STAX instructions. The answer is to be loaded in the
memory location 2100 H.
 LXI H, 2201 H ; Loads H = 22 H and L = 01 H
 LXI D, 2100 H ; Loads D = 21 H and E = 00 H
 MOV A, M ; [] []HMA 2201←

 XCHG ; H = 21 H, L = 00 H and D = 22 H, E = 01 H
 ADD M ;[] [] []HMAA 2100+←

 MOV M, A ; [] []AM H ←2100

 HLT
 In this program no LDAX and STAX instructions are used.
DAA (Decimal Adjust the Accumulator)
 The DAA is one byte instruction and no operand is needed with this instruction. It
adjusts the accumulator to packed BCD (Binary Coded Decimal) after addition of two
BCDs. In other words, after addition of two hexadecimal numbers if this instruction is
used then the result in decimal form is obtained. For this Auxiliary Carry Flag (AC) and
Carry Flag (CY) take care of this instruction.
 It functions in two steps:

1. If the lower nibble (lower 4-bits) of the accumulator is greater than 9 or
Auxiliary carry flag is set, then it adds 06 H to the accumulator.

2. Subsequently, if the higher nibble (higher 4-bits) of the accumulator is
now greater than 9 or the carry flag (CY) is set, it adds 60 H to the
accumulator.

All the flags are affected with this instruction.
Example 5.1 What will be the value of accumulator, CY and AC flags after the
execution of the following program:
 MVI A, 38 H
 ADI 87 H
 DAA
 HLT
Solution. A = 38 H 0 0 1 1 1 0 0 0
 Adds 87 H 1 0 0 0 0 1 1 1

 145

 1 0 1 1 1 1 1 1
 0 0 0 0 0 1 1 0 Lower nibble is more than 9

 1 1 0 0 0 1 0 1 AC = 1
 0 1 1 0 0 0 0 0 Upper nibble is more than 9

 1 0 0 1 0 0 1 0 1
 Result = 125 (Decimal)

A = 0 0 1 0 0 1 0 1 CY = 1 AC = 1
PCHL (Copies H-L to PC)
 This is one byte instruction and no operand is needed with this instruction. It
copies the contents of H-register to high-order byte of the program counter (PC) and the
contents of L-register to low order byte of the program counter.
 [] []HLPC ← i.e. [] []HPCH ← and [] []LPCL ←
For example if PC = 2106 H and HL = 2500 H
then after the execution of the instruction PCHL will result:
 PC = 2500 H
No flag is affected with the instruction.
This instruction is basically an unconditional jump instruction as is evident from the
above example.
SPHL (Copies HL to Stack Pointer SP)
 This is also one byte instruction as no operand is used. The SPHL instruction
copies the contents of H-register to high order byte stack pointer (SP) and the contents of
L-register to low order byte of stack pointer (SP).
 [] []HLSP ← i.e. [] []HSPH ← and [] []LSPL ←

 None of the flags is affected with this instruction.
For example if H = 23 H and L = 45 H
 and SP = 2501 H
then after the execution of the instruction SPHL will result:
 SP = 2501 H
 This is another way of initialization the stack pointer.
XTHL (Exchanges the top of the stack with H-L register pair)
 The XTHL is one byte instruction and does not require any operand. The top byte
of the stack is exchanged with L-register and next byte of the stack is exchanged with H-
register.
 i.e. [] []SPML ↔

 and [] []1SPMH +↔

For example if H = 21 H L = 02 H
 and MSP =1A H MSP+1 = 2C H
as shown in figure 5.8(a), then after the execution of the instruction XTHL will result:
 H = 2C H L = 1A H
 and MSP = 02 H MSP+1 = 21 H
as shown in figure 5. 8(b).
 No flag is affected with the instruction.

 146

 Fig. 5.8 (a) Fig. 5.8 (b)

5.4 TIMING DIAGRAM FOR 8085 INSTRUCTIONS
 The working of 8085 microprocessor can best be understood by considering the
timing diagrams of its few instructions. The graphical representation depicting the
necessary steps carried out in a machine cycle is known as Timing Diagram. As is well
known that the total time required for the execution of an instruction is the time required
to fetch and execute an instruction.
i.e. Instruction Cycle = Instruction fetch + Instruction execution
 The instruction cycle may be of one, two or three bytes. During the fetch cycle, an
instruction of the program (op code) is extracted from the memory locations and copied
in the instruction register (IR) of C.P.U.
 The op code of the instruction copied in the instruction register (IR) is decoded
during the execution cycle to perform the specific activities.
 It may further be mentioned that an instruction cycle may take one to five
machine cycles. Generally, first machine cycle known as op code fetch cycle, has either
four or six T-states and the remaining machine cycles called execution cycles, have two
or three T-states. A T-state represents one clock cycle.
 The NOP is the shortest instruction which takes only one machine cycle with four
T-states. However, the CALL is the longest instruction which takes five machine cycles
with 18 T-states.
 Here the timing diagrams of a few instructions will be discussed.

5.4.1 Timing Diagram of MOV reg, M
 The timing diagram of the instruction

 147

 MOV reg, M
is shown in figure 5.9.

This is an indirect read instruction and takes two memory cycles (M1 and M2).
The first machine cycle (M1) is known as instruction fetch cycle, during which the op
code of the instruction is fetched from the memory. This machine cycle takes four T-
states. The second machine cycle M2 is known as the execution cycle during which the
data from the memory location addressed by H-L register pair is transferred to the given
register. The second machine takes three states.
 During the first T-state (T1) of M1 cycle, microprocessor sends the address of the
memory location where the op code of the instruction MOV reg, M is stored, to the
address lines. The high order byte of the PC (PCH) is placed on A8-A15 lines and it stays
on till T4. The low order byte of PC (PCL) is placed on the address data lines (AD0-AD7)
which stays on only during T1-state. For this purpose ALE (Address Latch Enable) signal
gives a positive pulse midway through first T-state (T1), which latches the low order byte

of the address into the memory chips. The MIO / signal goes low at the beginning of T1
state; this enables the peripheral chips for a memory operation rather than input/output
operation. It is customary to represent the address lines by double sided waveforms as the
address bits may be high or low (ref. fig. 5.9).

MOV reg, M

Fig. 5.9

 During the second T-state (T2) of this op code fetch cycle, program counter (PC)
is incremented (PC = PC + 1). The address disappears from the address data bus (AD7-
AD0) at the beginning of T2 state. This is shown by dashed line indicating the data on the

 148

bus is invalid or meaningless. At the beginning of T2 state RD signal goes low and
remains low till the middle of the T3 state.
 During the third T-state (T3) of M1 machine cycle, the op code of the instruction is
read out from the memory which is sent to the instruction register (IR) i.e. IRINSTR→ .
 The fourth T-state (T4) of M1 machine cycle is denoted by X which indicates that
this T-state is needed for the instruction decoding and other internal operations before the
execution cycle.
 Now the second machine cycle M2 known as execution cycle starts. During the
first T-state of this execution cycle the contents of H-L register pair are placed on the
address bus and address data bus. Basically, it performs the same operation as the T1-state
of M1 cycle. During T2 and T3 states of M2 machine cycle the data is read from the
memory and copied in the specified register.
 This completes the instruction MOV reg, M. It may be noted that this instruction
needs two machine cycles with 7 T-states.
5.4.2 Timing Diagram of MOV M, reg

This is an indirect write instruction. The timing diagram of MOV M, reg
instruction is shown in figure 5.10. The first three states of memory fetch cycle M1 are
the same as for MOV reg, M. During fourth T-state (T4) of M1, the contents of specified
register are copied in the temporary register.

During the T1-state of second machine cycle M2, the contents of H-L pair are
placed on the address and address data bus. As usual during this state ALE sends a high
pulse. During T2 and T3 states of machine cycle M2, contents of temporary register are
transferred (copied) to the specified address. Since it is memory write instruction, so at

the beginning of T2-state WR signal activates (becomes low) and it remains low till half
way through its T3-state.

This instruction also takes two machine cycles with 7 T-states.

 149

MOV M, reg

 Fig. 5.10

5.4.3 Timing Diagram of MVI reg, data
 Figure 5.11 illustrates the timing diagram of the instruction MVI reg, data. This is
an immediate move instruction. It is two byte instruction; one byte is used for the op code
of the instruction and the other byte is used for the data. During T1, T2 states of op code
fetch cycle M1 the op code of the instruction (INSTR) is loaded in the instruction register
(IR). The operation for these T-states is similar to other instructions discussed earlier.
The T4-state of this cycle M1 is for decoding.

 In the second machine cycle M2, the contents of the program counter (PC) is
placed on the address and address data buses during its T1 state. This is the address of the
second byte. During T2 of M2 cycle, the PC is incremented. At the same time memory is
accessed and immediate read data is loaded to the specified register during T3-state of M2
machine cycle. This instruction takes two machine cycles with 7 T-states.

 150

MVI reg, data

Fig. 5.11

5.4.4 Timing Diagram of MOV reg2, reg1
 The timing diagram of MOV reg2, reg1 is shown in figure 5.12. This instruction
copies the contents of reg2 to reg1. So T1, T2 and T3 states of the op code fetch cycle M1
as usual indicate PC OUT, increment state ()1 PCPC →+ , copying of the op code on
the instruction to the instruction register (IRINSTR→) operations respectively.

Accordingly, ALE sends a high pulse at the beginning of T1-state, RD activates (low) at
the beginning of T2 state till the middle of T3 state till the middle of T3 state of M1 cycle.

The MIO / signal becomes low at the beginning of T1 till the end of T3 of M2 machine
cycle. During T4 state the contents of reg2 is copied in Temporary register
(TMPreg →2).
 This instruction does not need address bus and address data bus during the second
machine cycle M2. The only thing to happen during M2 cycle is the transfer of the
contents of Temporary register to reg1, for which address and address data buses are not
required. So time process starts i.e. during the second machine cycle M2 of the instruction
MOV reg2, reg1, fetching operation of the next instruction will take place. This is called
Fetch Execute Overlap (FEO). Because of FEO, the new address of PC is placed on the
address and address data buses during T1 state of M2 machine cycle. Thus at the trailing

 151

edge of ALE signal, this address is latched into the memory chips. The contents of
temporary register are copied into reg1 at the T2 state of this machine cycle. This
completes the execution MOV reg2, reg1 instruction. However at the same T-state,
program counter is incremented. The op code of the next instruction is copied in IR
during T3-state of M2.
 It may be mentioned here that as shown in figure 5.12, this instruction takes two
machine cycles with 7 T-states; but because of FEO only one machine cycle with 4 T-
states are counted to fetch and execute this instruction.

MOV reg2, reg1

Fig. 5.12

5.4.5 Timing Diagram of MVI M, data
 The timing diagram of MVI M, data instruction is shown in figure 5.13. This is a
two byte instruction which takes 3 machine cycles with 10 T-states. The machine cycle
M1 is the op code fetch cycle, whose operation has already been discussed. In the T1 state
of M2 cycle, the incremented address of PC is latched into memory chips. The T2-state is
the increment state and during the T3 state of M2 data is transferred to temporary register.
This machine cycle is memory read cycle.
 The third machine cycle is basically memory write cycle during which the
contents of temporary register are copied in the memory location addressed by H-L
register pair. In the T1 state of the machine cycle M3, the contents of H-l register pair is
placed on the address bus and address data bus. It is then latched in the memory chips. In

T2 state the WR signal is low till the middle of T3 state of this cycle. So the contents of

 152

temporary register are copied in MH-L location during T2 and T3 state of M3 machine
cycle.

MVI M, data

 Fig. 5.13

 153

5.4.6 Timing Diagram of XCHG

Let us discuss the timing diagram of one byte instruction XCHG. Its timing

diagram is shown in figure 5.14. It exchanges the contents of H-L register pair with
contents of D-E register pair.

The operation of M1 machine cycle of this instruction is similar to other
instructions discussed above. In this instruction the contents of H-L and D-E register
pairs are to be exchanged, so address bus and address data bus are not needed. For this
the operation FEO (Fetch Execute Overlap) occurs and as usual the next instruction is
fetched from the memory for the M2 machine cycle. However, during T2 state of this
machine cycle the contents of H-E and D-E pairs are exchanged (EDLH −↔−).
 Because of FEO, XCHG instruction is considered to take one machine cycle with
4 T-states.

XCHG

Fig. 5.14

5.4.7 Timing Diagram of LXI rp, dbyte
 The timing diagram of 3-byte instruction LXI rp, dbyte is shown in figure 5.15. It
loads the low byte of dbyte (double byte data) to the lower register of the given register
pair rp and high byte to the high register of rp. This instruction takes three memory
cycles with 10 T-states. First machine cycle is the op code fetch cycle which fetches the

 154

op code of the instruction using the same procedure as discussed above for the other
examples.

LXI rp, data

Fig. 5.15

 155

In the T1-state of the second machine cycle, address bus and address data bus are
used to fetch the second byte (low byte of dbyte), for which ALE is enable at the
beginning to the middle of this T-state. During T2 state of M2, PC is incremented and at
T3-state low byte of the dbyte is stored in lower register of rp (Low byte Lrp→). This is

a read cycle so RD is low at the beginning of this T-state to the middle of T3 state. Same
operation as for M2 is, therefore, performed during M3 machine cycle so that high byte of
dbyte is stored in high register of register pair rp (High byte Hrp→).
5.4.8 Timing Diagram of IN byte
 The timing diagram of IN byte shown in figure 5.16 will now be discussed. This
is an I/O read cycle and the microprocessor reads the data available at an input port or
input device. The address of the port is of one byte given with the instruction. The data
read out from the output port will be placed in the accumulator (A). This instruction is a
two byte long and takes three memory cycles with 10 T-states. First machine cycle is an
op code fetch cycle, the second is memory read cycle and the third is output read cycle.
 We are familiar with the op code fetch cycle M1. So the discussion will be made
for the second and third machine cycles. In the T1-state of second machine cycle M2, the
address of PC (incremented address) will be latched into the memory chips. At the
beginning of T1 state ALE sends a high pulse. During the T2-state PC is incremented
(PCPC →+1). Near the end of T2-state of M2, a byte appears on address data bus.
During the T3-state of M2 machine cycle, this byte is copied in the W and Z registers
(byte→Z, W), i.e. W and Z registers have the same byte. This byte is port address which
is of 8 bits.

 During T1-state of the third machine cycle M3, MIO / signal goes high which
enables the peripheral chips for an I/O operation rather than memory operation. During
this T-state, the contents of W-register are placed on the address bus and the contents of
Z-register on address data bus (WZ OUT). In case of I/O device or I/O port the address is
only of 8 bit long and therefore, the address of I/O device is duplicated on both address
bus and address data bus. During T2-state of M3 cycle, RD signal goes low which
indicates that it is I/O read operation. The data read out from the input port (input device)
will be copied in the accumulator during T2 and T3 states.

 156

 157

PROBLEMS

1. Draw and discuss the architecture of 8085 microprocessor.
2. Mention various flags provided in 8085 microprocessor and discuss their

roles.
3. Discuss the functions of program counter, Stack pointer and status flags in the

architecture of 8085 microprocessor.
4. Discuss the role of address buffer and address data buffer in the architecture

of 8085 microprocessor.
5. Discuss the functions of the following signals of 8085 microprocessor:

ALE,WR, RD, S0 and S1.
6. Discuss LHLD address, SHLD address, LDAX rp and STAX rp instructions of

8085.
7. Discuss the following instructions of 8085

XCHG, XTHL, SPHL and PCHL
 Which flags are affected by these instructions?

8. Discuss DAA instructions of 8085. Explain how flags are affected with this
instruction.

9. Draw and discuss the timing diagram of MOV reg2, reg1.
10. Draw and discuss the timing diagram of MOV reg, M.
11. Draw and discuss the timing diagram of MOV M, reg.
12. Draw and discuss the timing diagram of MVI reg, data.
13. Draw and discuss the timing diagram of MVI M, data.
14. Draw and discuss the timing diagram of LXI rp, dbyte.
15. Draw and discuss the timing diagram of XCHG.
16. Draw and discuss the timing diagram of IN byte.
17. Discuss LDAX rp instruction of 8085. What instruction should be used to

move the contents stored in memory location whose address is stored in H-L
register pair.

18. What instruction should be used to store the accumulator contents to the
memory location addressed by D-E register pair? Discuss that instruction in
detail.

19. Discuss PCHL instruction of 8085. Explain how this instruction is said to be
used as unconditional jump instruction.

20. What will be contents of accumulator and flag register, after the execution of
following program:

MVI A, 47 H
MVI B, 37 H
ADD B
DAA
HLT

6
Programming of 8085

In this chapter assembly language programming of different programs will be
discussed. It will help readers to go into the details of 8085 programming operations and
their applications. For this, one is supposed to be well acquainted with 8085 instruction
set discussed in the preceding chapters. Though some programming examples have also
been discussed in these chapters, yet this chapter will exclusively deal with some more
programming examples. The assembly language program written by the programmer in
mnemonic form is also called as source program. The instructions, operand and data may
be converted to binary (machine language) either by hand assembler or machine
assembler. In case of hand assembler the hexadecimal data (op code / operand and data)
are fed to the microprocessor kit through the hexadecimal key board. But in machine
assembler, instructions (in mnemonic form) with data or operand are directly fed to the
microprocessor kit through Alpha-numeric key board (computer key board). Here we are
concerned with the assembly language program (source program).

In computers high level language like C, C++, Pascal, BASIC etc are used, which
are easier than the assembly language. The computer is used for the conversion of high
level language to assembly language. The advantage of using assembly language is that it
can directly go into the details of the microprocessor’s register and manipulate as the
requirement.
6.1 SIMPLE PROGAMS

The simple programs based on the instruction set of 8085 microprocessor are given
in the following examples.
Example 6.1. Write an assembly language program of 8085 to find 1’s complement of
the data stored in memory location 2500 H and the result is to be stored in memory
location 2501 H.
Solution.
Program:
Label Mnemonics Operand Comments

 LDA 2500 H ; Load the data from 2500 H
memory location to accumulator.

 CMA ; Complement the contents of
accumulator (Converts in 1’s
complement).

 STA 2501 H ; Store the result in memory location
2501 H.

 HLT ; Stop processing.

 159

Example 6.2. Write an assembly language program of 8085 to find 2’s complement of
the data stored in memory location 2100 H and the result is to be stored in memory
location 2101 H.
Solution.
Program:
Label Mnemonics Operand Comments

 LDA 2100 H ; Load the data from 2100 H
memory location to accumulator.

 CMA ; Complement the contents of
accumulator (Converts in 1’s
complement).

 ADI 01 H ; 01 is added to the accumulator
contents to get the 2’s complement.

 STA 2101 H ; Store the result in memory location
2101 H.

 HLT ; Stop processing.
Example 6.3. Write an assembly language program of 8085 to find 1’s complement of n
(decimal number) bytes of data stored in memory location starting at 2501 H. The
number n (decimal number) is stored in memory location 2500 H. Store the result in
memory locations starting at 2601 H.
Solution.
Program:
Label Mnemonics Operand Comments

 LXI D, 2601 H ; Get first address of the destination
in D-E register pair.

 LXI H, 2500 H ; Get H-L pair with 2500 H.
 MOV C, M ; Data in 2500 H is loaded to C-

register which will be used as
counter.

 INXH ; Increment H-L register pair.
LOOP MOV A, M ; Accumulator is loaded with the

data.
 CMA ; Complement the contents of

accumulator (Converts in 1’s
complement)

 STAX D ; Store the result in memory location
addressed by D-E register pair.

 INX D ; Increment D-E register pair.
 INX H ; Increment H-L register pair.
 DCR C ; Decrement the C-register data.
 JNZ LOOP ; If data in C-reg. is not zero jump to

LOOP for next conversion.
 HLT ; Stop processing.

Example 6.4. Write an assembly language program of 8085 to find 9’s complement of n
bytes (in BCD) of data stored in memory location starting from 2501 H. The number n

 160

(decimal number) is stored in memory location 2500 H. Store the result in memory
locations starting from 2601 H.
Solution.
Program:
Label Mnemonics Operand Comments

 LXI D, 2601 H ; Get first address of the destination
in D-E register pair.

 LXI H, 2500 H ; Get H-L pair with 2500 H.
 MOV C, M ; Data in 2500 H is loaded to C-

register which will be used as
counter.

 INX H ; Increment H-L register pair.
LOOP MVI A, 99 H ; Get 99 H in accumulator.
 SUB M ; Subtract each byte by 99 H to get

9’s complement.
 STAX D ; Store the result in memory location

addressed by D-E register pair.
 INX D ; Increment D-E register pair.
 INX H ; Increment H-L register pair.
 DCR C ; Decrement the C-register data.
 JNZ LOOP ; If data in C-reg. is not zero jump to

loop for next conversion.
 HLT ; Stop processing.
 It is clear from this example that for 9’s complement each BCD byte is subtracted
from 99.
Example 6.5. Write an assembly language program of 8085 to find 2’s complement of a
16 bit number stored in memory locations 2101 H and 2102 H. The least significant byte
is in 2101 H. The result is to be stored in memory locations 2103 H and 2104 H.
Solution.
Program:
Label Mnemonics Operand Comments

 LXI H, 2101 H ; Get H-L pair with 2101 H.
 MVI B, 00 H ; Store 00 to register B which will be

used to store carry.
 MOV A, M ; Accumulator is loaded with the

data.
 CMA ; Complement the contents of

accumulator (Converts in 1’s
complement).

 ADI 01 H ; Add 01 H to the accumulator
content to get 2’s complement.

 STA 2103 H ; Store the result in memory location
2103 H.

 JNC NXT ; If there is no carry jump to NXT.
 INR B ; Increment 1 to B-register as carry.

 161

 NXT INX H ; Increment H-L register pair for the
second byte.

 MOV A, M ; Move the second byte to
accumulator.

 CMA ; Complement the contents of
accumulator.

 ADD B ; Add carry stored in register B.
 STA 2504 H ; Store in 2504 H.
 HLT ; Stop processing.

 From this example it is clear that 1 is added to the 1’s complement of LS byte and
to the 1’s complement of MS byte 1 is added if there is a carry from the previous byte.
Example 6.6. Write an assembly language program of 8085 to find 10’s complement of
a 16 bit number (BCD) stored in memory locations 2101 H and 2102 H. The least
significant byte is in 2101 H. The result is to be stored in memory locations 2103 H and
2104 H.
Solution.
Program:
Label Mnemonics Operand Comments

 LXI H, 2101 H ; Get H-L pair with 2101 H.
 MVI B, 00 H ; Store 00 to register B which will be

used to store carry.
 MVI A, 99 H ; Store 99 in accumulator
 SUB M ; Subtract each byte by 99 H to get

9’s complement.
 ADI 01 H ; Add 01 H to the accumulator

content to get 10’s complement.
 STA 2103 H ; Store the result in memory location

2103 H.
 JNC NXT ; If there is no carry jump to NXT.
 INR B ; Increment 1 to B-register as carry.
 NXT INX H ; Increment H-L register pair for the

second byte.
 MVI A, 99 H ; Store 99 in accumulator

 SUB M ; Subtract each byte by 99 H to get
9’s complement.

 ADD B ; Add carry stored in register B.
 STA 2104 H ; Store in 2104 H.
 HLT ; Stop processing.
 From this example it is clear that 1 is added to the 9’s complement of LS byte and
to the 9’s complement of MS byte 1 is added if there is a carry from the previous byte.

Example 6.7. Write an assembly language program of 8085 to find 2’s complement of N
bytes (2≥N). The number of bytes N in hexadecimal is stored in 2100 H. The bytes are
stored in memory locations starting at 2101 H. The least significant byte is in 2101 H.
The result is to be stored in memory locations starting at 2201 H.

 162

Solution.
Program:
Label Mnemonics Operand Comments

 LXI H, 2100 H ; Get H-L pair with 2100 H.
 LXI D, 2201 H ; Get D-E pair with 2201 H.
 MOV C, M ; Get the number N in c-register to be

used as counter.
 INX H ; Increment H-L pair.
 MOV A, M ; Accumulator is loaded with first

data.
 CMA ; Complement the contents of

accumulator (Converts in 1’s
complement).

 ADI 01 H ; Add 01 H to the accumulator
content to get 2’s complement.

 STAX D ; Store the result in memory location
addressed by D-E pair.

 JNC NXT ; If there is no carry jump to NXT.
 MVI B, 01 H ; Store 01 to B-register as carry.
 JMP NXT1 ; Jump to NXT1.
NXT MVI B, 00 H ; Store 00 to B-register as carry.
NXT1 DCR C ; Decrement C-reg.
LOOP INX H ; Increment H-L pair.

 INX D ; Increment D-E pair.
 MOV A, M ; Move the next byte to accumulator.
 CMA ; Complement the contents of

accumulator.
 ADD B ; Add carry stored in register B.
 STAX D ; Store in the memory location

addressed by D-E pair.
 JNC NXT2 ; If there is no carry jump to NXT2.
 MVI B, 01 H ; Store 01 to B-register as carry.
 JMP NXT3 ; Jump to NXT3.
NXT2 MVI B, 00 H ; Store 00 to b-register as carry.
NXT3 DCR C ; Decrement C-reg.
 JNZ LOOP ; If not zero jump to LOOP.
 HLT ; Stop processing.
Example 6.8. Write an assembly language program of 8085 to find 10’s complement of
N bytes (2≥N). The number of bytes N in hexadecimal is stored in 2100 H. The bytes
are stored in memory locations starting at 2101 H. The least significant byte is in 2101
H. The result is to be stored in memory locations starting at 2201 H.
Solution.
Program:
Label Mnemonics Operand Comments

 LXI H, 2100 H ; Get H-L pair with 2100 H.
 LXI D, 2201 H ; Get D-E pair with 2201 H.

 163

 MOV C, M ; Get the number N in c-register to be
used as counter.

 INX H ; Increment H-L pair.
 MVI A, 99 H ; Accumulator is loaded with 99 H.
 SUB M ; Get the 9’s Complement of the

number stored in location
addressed by H-L pair.

 ADI 01 H ; Add 01 H to the accumulator
content to get 2’s complement.

 STAX D ; Store the result in memory location
addressed by D-E pair.

 JNC NXT ; If there is no carry jump to NXT.
 MVI B, 01 H ; Store 01 to B-register as carry.
 JMP NXT1 ; Jump to NXT1.
NXT MVI B, 00 H ; Store 00 to b-register as carry.
NXT1 DCR C ; Decrement C-reg.
LOOP INX H ; Increment H-L pair.

 INX D ; Increment D-E pair.
 MVI A, 99 H ; Get 99 in accumulator.
 SUB M ; Get 9’s Complement of the

contents of accumulator.
 ADD B ; Add carry stored in register B to

get 10’s complement.
 STAX D ; Store in the memory location

addressed by D-E pair.
 JNC NXT2 ; If there is no carry jump to NXT2.
 MVI B, 01 H ; Store 01 to B-register as carry.
 JMP NXT3 ; Jump to NXT3.
NXT2 MVI B, 00 H ; Store 00 to b-register as carry.
NXT3 DCR C ; Decrement C-reg.
 JNZ LOOP ; If not zero jump to LOOP.
 HLT ; Stop processing.

Example 6.9. Write an assembly language program of 8085 to combine two hex nibbles
stored in 2500 H and 2501 H memory locations, to form a byte. The least significant
nibble is stored in 2500 H and most significant nibble is stored in 2501 H. The byte thus
combined should be stored in 2502 H. (Let 08 H is stored in 2500 H and 09 H is stored in
2501 H, after the program is executed 2502 H should be loaded with the combined byte
89 H).
Solution.
Program:
Label Mnemonics Operand Comments

 LXI H, 2500 H ; Get H-L pair with 2500 H.
 MOV A, M ; Data in 2500 H is loaded to

Accumulator.
 RLC ; Rotate left

 164

 RLC ; Rotate left
 RLC ; Rotate left
 RLC ; Rotate left (Rotated left four times

so that it is moved to MS nibble).
 INX H ; Increment H-L register pair.
 ORA M ; Oring of two nibbles combines

them to form a byte in
accumulator.

 INX H ; Increment H-L register pair.
 MOV M, A ; Move the accumulator content

(required byte) to the memory
location addressed by H-L register
pair.

 HLT ; Stop processing.

Example 6.10. Write an assembly language program of 8085 to separate a
hexadecimal number into two nibbles. The hexadecimal number is stored in 2501 H
memory location. The least significant nibble of the byte is to be stored in 2502 memory
location and the most significant nibble is to be stored in 2503 H memory location.
(Suppose 3A H is a byte stored in memory location 2501 H and the lower nibble 0A
should be stored in 2502 H and 03 should be stored in 2503 H)
Solution.
Program:

Label Mnemonics Operand Comments

 LXI H, 2501 H ; Get H-L pair with 2501 H.
 MOV A, M ; Data in 2501 H is loaded to

Accumulator.
 MOV B, A ; Accumulator content are also

loaded to B register.
 ANI 0F H ; Mask off the first four digits

(higher nibble).
 INX H ; Increment H-L register pair.
 MOV M, A ; Lower nibble is loaded to the

memory location addressed by H-L
register pair.

 MOV A, B ; Get the byte again in the
accumulator.

 ANI F0 H ; Mask off the lower nibble.
 INX H ; Increment H-L register pair.
 MOV M, A ; Higher nibble is loaded to the

memory location addressed by H-L
register pair.

 HLT ; Stop processing.

 165

Example 6.11. Write an assembly language program of 8085 to check a hexadecimal
number stored in 2500 H memory location for odd or even parity. If the parity is even
store data EE H to memory location 2501H otherwise store 00 H in 2501 H.
Solution.
Program:

Label Mnemonics Operand Comments

 LXI H, 2500 H ; Get H-L pair with 2500 H.
 MOV A, M ; Data in 2500 H is loaded to

Accumulator.
 ORA A ; Set the flag.
 JPE EVEN ; Check for even parity, if parity is

even jump to EVEN.
 INX H ; Increment H-L register pair.
 MVI M, 00 H ; Load 00 H to the memory location

addressed by H-L register pair.
 JMP DONE ; Jump to DONE.
EVEN INX H ; Increment H-L register pair.
 MVI M, EE H ; Load EE H to the memory location

addressed by H-L register pair.
DONE HLT ; Stop processing.

Example 6.12. n (decimal number) data bytes are stored in the memory locations
starting at 2501 H. Write an assembly language program of 8085 to check if 12 H is
stored in any of the given locations. If any of the locations has 12 H then store 12 H in
that location else load 00 H in that memory location.
Solution.
Program:

Label Mnemonics Operand Comments

 LXI H, 2500 H ; Get H-L pair with 2500 H.
 MOV C, M ; Data in 2500 H is loaded to C reg.

which is used as the counter.
LOOP INX H ; Increment H-L register pair.
 MOV A, M ; Load the content of MHL to

accumulator.
 CPI 12 H ; Compare if the accumulator data

are 12 H.
 JZ NXT ; If it is 12 H then jump to NXT.
 MVI M, 00 H ; Else load 00 H to the memory

location addressed by H-L register
pair.

 JMP DONE ; Jump to DONE.
NXT MVI M, 12 H ; Load 12 H to the memory location

addressed by H-L register pair.

 166

DONE DCR C ; Decrement the content of C-reg.
for next byte.

 JNZ LOOP ; If the contents of C-reg. are not
zero then jump to LOOP.

 HLT ; Stop processing.

Example 6.13. 16 data bytes are stored in memory locations 2001 H to 2010 H. Write
an assembly language program of 8085 to transfer this block of data bytes to memory
locations 2501 to 2510 H.
Solution.
Program:

Label Mnemonics Operand Comments

 LXI H, 2001 H ; Get H-L pair with 2001 H.
 LXI D, 2501 H ; Get the address of the memory

location (destination) in D-E
register pair

 MVI C, 10 H ; Get 10 H (1610) Data in C register
which is used as the counter.

LOOP MOV A, M ; Load the content of MHL to
accumulator.

 STAX D ; Load the content of accumulator to
the memory locations addressed by
D-E register pair.

 INX H ; Increment H-L register pair.
 INX D ; Increment D-E register pair.
 DCR C ; Decrement the content of C-reg.

for next byte.
 JNZ LOOP ; If the contents of C-reg. are not

zero then jump to LOOP.
 HLT ; Stop processing.

Example 6.14. 16 data bytes are stored in memory locations 2001 H to 2010 H. Write
an assembly language program of 8085 to transfer this block of data bytes to memory
locations 2501 to 2510 H in the reverse order (i.e. the data of 2001 is to transferred to
2510 H and data of 2002 H to 250F H and so on).
Solution.
Program:

Label Mnemonics Operand Comments

 LXI H, 2001 H ; Get H-L pair with 2001 H.
 LXI D, 2510 H ; Get the address of the memory

location (destination) in D-E
register pair

 MVI C, 10 H ; Get 10 H (1610) Data in C register
which is used as the counter.

 167

LOOP MOV A, M ; Load the content of MHL to
accumulator.

 STAX D ; Load the content of accumulator to
the memory locations addressed by
D-E register pair.

 INX H ; Increment H-L register pair.
 DCX D ; Decrement D-E register pair.
 DCR C ; Decrement the content of C-reg.

for next byte.
 JNZ LOOP ; If the contents of C-reg. are not

zero then jump to LOOP.
 HLT ; Stop processing.

Example 6.15. Write an assembly language program of 8085 to clear the memory
locations starting at 2001 (i.e. each location should have 00 H). The length of data bytes
is given in 2000 H memory location.
Solution.
Program:

Label Mnemonics Operand Comments

 LXI H, 2000 H ; Get H-L pair with 2000 H.
 MOV C, M ; Use C register as counter.
 XRA A ; Clear the accumulator.
LOOP INX H ; Increment H-L register pair.
 MOV M, A ; Load the accumulator content to

the memory location.
 DCR C ; Decrement the content of C-reg.

for next byte.
 JNZ LOOP ; If the contents of C-reg. are not

zero then jump to LOOP.
 HLT ; Stop processing.

Example 6.16. Write an assembly language program of 8085 to add five bytes of data
stored in memory locations starting at 2000 H. If the sum generates a carry, stop
addition and store 01 H to the memory location 2501 H; else continue addition and store
the sum at 2501 memory location..
Solution.
Program:

Label Mnemonics Operand Comments

 LXI H, 2000 H ; Get H-L pair with 2000 H.
 MVI C, 05 H ; Store the number of data bytes in

C register as counter.
 XRA A ; Clear the accumulator and CY flag.
LOOP ADD M ; Add the byte in accumulator.

 168

 JC NXT ; If there is a carry jump to NXT.
 INX H ; Increment the H-L register pair.
 DCR C ; Decrement the content of C-reg.

for next byte.
 JNZ LOOP ; If the contents of C-reg. are not

zero then jump to LOOP.
 STA 2501 H ; Store the sum in memory location

2501 H.
 HLT ; Stop processing.
NXT MVI A, 01 H ; If carry occurs load 01 to

accumulator.
 STA 2501 H ; Store 01 H to 2501 H.
 HLT ; Stop processing.

Example 6.17. Write an assembly language program of 8085 to add five bytes of data
stored in memory locations starting at 2000 H. The sum may be more than one byte.
Store the result at two consecutive memory locations2500 H and 2501 H.
Solution.
Program:

Label Mnemonics Operand Comments

 LXI H, 2000 H ; Get H-L pair with 2000 H.
 MVI C, 05 H ; Store the number of data bytes in C

register as counter.
 XRA A ; Clear the accumulator and CY flag.
 MOV B, A ; Store the accumulator contents to

B-register also for the carry.
LOOP ADD M ; Add the byte in accumulator.
 JNC NXT ; If there is a no carry jump to NXT.
 INR B ; Increment B as carry is generated.
NXT INX H ; Increment the H-L register pair.
 DCR C ; Decrement the content of C-reg.

for next byte.
 JNZ LOOP ; If the contents of C-reg. are not

zero then jump to LOOP.
 LXI H, 2500 H ; Store H-L pair with 2500 H

(destination address).
 MOV M, A
 INX H ; Store the sum to 2500 H.
 MOV M, B ; Content of B are stored in 2501 H.
 HLT ; Stop processing.

Example 6.18. Write a program in assembly language of 8085 to test 6th bit (D6 bit) of
a byte stored at 2500 H memory location. If the bit D6 is zero then store 00 H at 2501 H
else store the same number at 2501 H.
Solution.
Program:

 169

Label Mnemonics Operand Comments

 LXI H, 2500 H ; Get H-L pair with 2500 H.
 MOV A, M ; Store the byte in accumulator
 ANI 40 H ; Reset all the bits except D6.
 JZ END ; If this bit is zero jump to END.
 MOV A, M ; Store the byte in accumulator

again.
 INX H ; Increment H-L pair.
 MOV M, A ; The byte is stored in 2501 H.
 HLT ; Stop processing.
END XRA A ; Clear accumulator.
 INX H ; Increment H-L pair.
 MOV M, A ; 00 H is stored in 2501 H.
 HLT ; Stop processing.

Example 6.19. Write an ALP (Assembly Language Program) of 8085 to find logical OR
and exclusive OR of two numbers stored at 2501 H and 2502 H memory locations. The
results should be stored at 2503 H (logical OR operation) and 2504 H (XOR operation)
memory locations.
Solution.
Program:
Label Mnemonics Operand Comments

 LXI H, 2501 H ; Get H-L pair with 2501 H.
 MOV B, M ; Store the byte in B-register.
 MOV A, B ; Store this byte in accumulator also.
 INX H ; Increment H-L pair.
 MOV C, M ; Store second byte to C register.
 ORA C ; Logical OR of two bytes.
 INX H ; Increment H-L pair.
 MOV M, A ; Store the result (OR) in 2503 H.
 MOV A, B ; Load the first number in

accumulator.
 XRA C ; Ex-OR the two number.
 INX H ; Increment H-L pair.
 MOV M, A ; Store the result (XOR)
 HLT ; Stop processing.

Example 6.20. Write an ALP (Assembly Language Program) for 8085 to shift an 8-bit
number left by one bit. The number is stored in 2101 H memory location. The result is to
be stored in 2102 H memory location.
Solution.
Program:
Label Mnemonics Operand Comments

 LDA 2101 H ; Get the number is accumulator.
 ADD A ; Shift it left by one bit.
 STA 2102 H ; Store the result in 2502 H.
 HLT ; Stop processing.

 170

Example 6.21. Write an ALP 8085 to shift a 16-bit number left by one bit. The number
is stored in 2101 H and 2102 H memory locations. The result is to be stored in 2103 H
and 2104 H memory locations.
Solution.
Program:
Label Mnemonics Operand Comments

 LHLD 2101 H ; Get the 16 bit number in H-L
register pair.

 DAD H ; Shift left by one bit.
 SHLD 2103 H ; Store the result in 2103 H and 2104

H memory locations.
 HLT ; Stop processing.

6.2 PROGAMS ON CODE CONVERSION

The programs on code conversion will now be discussed.
6.2.1 BCD to Binary Conversion
 Suppose we have 0 to 99 decimal numbers (BCD numbers) and we wish to
convert any of these numbers to its equivalent binary number, we proceed in the
following way:
 For example 49 (4 x 10 + 9) is the given decimal number, its binary equivalent is
(00011 00012 = 31 H).
Step I Unpack the number in MSD and LSD form.
 0000 1001 LSD in four least significant nibble in a register.
 0000 0100 MSD in four least significant nibble in anther register.
Step II Multiply MSD by decimal number 10.
 or MSD is added 10 times with 0000.

So we get (4 x 10 = 0010 1000).
Step III ADD LSD to the result of step II.
 i.e. 00101000 + 00001001 = 00110001
 Hence we get the result.

Example 6.22. A BCD number (0 to 99) is stored in a memory location 2500 H, write
an ALP of 8085 to convert the BCD number into its equivalent binary number. Store the
result in 2600 H memory location.
Solution.
Main Program:
Label Mnemonics Operand Comments

 LXI SP, XXXX H ; Initialize the stack pointer.
 LXI H, 2500 H ; Get H-L pair with 2500 H.
 LXI D, 2600 H ; Get D-E pair with 2600 H.
 MOV A, M ; Load the byte to accumulator.
 CALL CONV ; Call conversion subroutine

program.
 STAX D ; Store the result in 2600 H.
 HLT

Subroutine Program:

 171

Label Mnemonics Operand Comments
CONV PUSH D ; Push the contents of D-E register

pair to stack.
 PUSH H ; Push the contents of H-L register

pair to stack.
 ANI 0F H ; Separate LSD
 MOV C, A ; Store it to C-register.
 MOV A, M ; Load the byte to accumulator again.
 ANI F0 H ; Separate MSD.
 RRC ; Rotate right four times
 RRC ; to shift MSD to four
 RRC ; least significant nibble
 RRC ; of accumulator.
 MOV D, A ; Store MSD to D register.
 XRA A ; Clear accumulator.
 MVI E, 0A H ; Get 0A (decimal number 10) to E-

register.
SUM ADD D ; Add MSD ten times to 00 H.
 DCR E ; Decrement C
 JNZ SUM ; If addition not complete then move

to SUM.
 ADD C ; Add LSD to 10 X MSD
 POP H ; Pop the contents of H-L pair.
 POP D ; Pop the contents of D-E pair.
 RET ; Go back to main program.

6.2.2 Binary to BCD (Unpacked) Conversion

For example binary number is 1111 1111 (FF H). Its decimal equivalent is 25510
having the unpacked BCD numbers as

 05 (0000 0101) BCD 1
 05 (0000 0101) BCD 2
 02 (0000 0010) BCD 3
The procedure for converting the 8 bit binary number (0000 0000 to 1111 1111)

into unpacked BCD number is given in the following steps.
Step I If the number is less than 100 go to step II. If the number is more than

100, divide the number by 100 or subtract 100 repeatedly till the reminder
is less than 100. The quotient is MS BCD (BCD 3).

Step II If the number (or remainder) is less than 10, go to step III. If number is
>10 < 100, then subtract 10 repeatedly till the remainder is less than 10.
The quotient is BCD 2.

Step III The remainder from step II is BCD 1.

 172

Example 6.23. A binary number (between 00 H to FF H) is stored in a memory location
2500 H, write an ALP of 8085 to convert this number into BCD number. Store each BCD
as unpacked BCD digit in the memory locations at 2601 H to 2603 H.
Solution.
Main Program:
Label Mnemonics Operand Comments

 LXI SP, XXXX H ; Initialize the stack pointer.
 LXI H, 2500 H ; Get H-L pair with 2500 H.
 MOV A, M ; Load the byte to accumulator.
 CALL CONV ; Call conversion subroutine

program.
 HLT

Subroutine Program 1:
Label Mnemonics Operand Comments

CONV LXI H, 2601 H ; Get H-L pair with 2601 H.
 MVI B, 64 H ; Load 100 in B-reg.
 CALL CONV1 ; Call another subroutine program for

the division by 100.
 MVI B, 0A H ; Load 10 in B-reg.
 CALL CONV1 ; Call the subroutine again for the

division by 10.
 MOV M, A ; Load the accumulator contents to

the memory location.
 RET ; Go back to main program.

Subroutine Program 2:
Label Mnemonics Operand Comments

CONV1 MVI M, FF H ; Get FF H in the MH-L.
NXT INR M ; Increment []LHM −
 SUB B ; Subtract the content of B from

accumulator.
 JNC NXT ; Jump to NXT if no carry.
 ADD B ; Add the contents of B to

accumulator.
 INX H ; Increment H-L register pair.
 RET ; Go back.

Example 6.24. Write ALP of 8085 for the following statement:
 A set of three packed BCD numbers (six digits or three bytes) are stored in
memory locations starting at 2500 H. The seven segment codes of the digits 0 to 9 for
common cathode LED are stored in memory locations starting at 2050 H; and the answer
is to be stored in memory locations starting at 2070 H.
Solution.
Main Program:
Label Mnemonics Operand Comments

 LXI SP, XXXX H ; Initialize the stack pointer.
 LXI H, 2500 H ; Get H-L pair with 2500 H.

 173

 MVI D, 03 H ; Number of bytes to be converted is
placed in D-register.

 CALL CONV ; Call conversion subroutine
program.

 HLT
Subroutine Program 1:
Label Mnemonics Operand Comments

CONV LXI B, 2070 H ; Get B-C pair with 2070 H.
NXT MOV A, M ; Move the content of []LHM − to

accumulator.
 ANI F0 H ; Separate MSD.
 RRC ; Rotate right four times
 RRC ; to shift MSD to four
 RRC ; least significant nibble
 RRC ; of accumulator.
 CALL SEGMENT ; Call subroutine program for the

conversion of unpacked BCD to
seven segment.

 INX B ; Increment B-C register pair.
 MOV A, M ; Get the byte again.
 ANI 0F H ; Separate LSD.
 CALL SEGMENT ; Call subroutine program for the

conversion of unpacked BCD
(LSD) to seven segment.

 INX B ; Increment B-C register pair.
 INX H ; Increment H-L register pair.
 DCR D ; Decrement the contents of D

register.
 JNZ NXT ; If the content in D register is not

then jump to NXT for next byte.
 RET ; Return to main program.

Subroutine Program 2:
Label Mnemonics Operand Comments

SEGMENT PUSH H ; Push the contents of H-L register
pair to stack.

 LXI H, 2050 H ; Get H-L pair with 2050 H.
 ADD L ; Add the content of L register to

accumulator to get right location
for the digit from the look-up table.

 MOV L, A ; Store it to L-register.
 MOV A, M ; Load the corresponding data from

the look-up table to accumulator.
 STAX B ; Store the result in the memory

location addressed by B-C register
pair.

 174

 POP H ; Get the contents of H-L register
pair from the stack.

 RET ; Go back
DATA (in the form of look-up table) is stored in the following memory locations:

2050 H 3F H (Digit 0)
2051 H 06 H (Digit 1)
2052 H 5B H (Digit 2)
2053 H 4F H (Digit 3)
2054 H 66 H (Digit 4)
2055 H 6D H (Digit 5)
2056 H 7D H (Digit 6)
2057 H 07 H (Digit 7)
2058 H 7F H (Digit 8)
2059 H 6F H (Digit 9)

The 3F H data is given for the digit 0. It is clear from the figure 6.1.

Fig. 6.1
6.2.3 Binary to ASCII Conversion
 ASCII (American Standard Code for Information Interchange) is a most
commonly used alphanumeric code. It is a seven bit code. The hexadecimal numbers 30
to 39 (0011 0000 to 0011 1001) represent 0 to 9 ASCII decimal numbers. Similarly, 41 H
to 5A H (0100 0001 to 0101 1010) represent capital letters A to Z in ASCII.
 For example, the ASCII representation of a binary number 8E is 38 H and 45 H
(as 8 is represented by 0011 1000 or 38 H; and E is represented by 0100 0101 or 45 H).
 The following steps are carried out for the conversion of Binary to ASCII

Step I First separate the LSD and MSD of the given binary number (or byte).

Each digit is then converted to ASCII.
Step II If the digit is less than 10 (0A H) then add 30 H (0011 0000) to the binary

number else add 37 H (0011 0111).
 For binary number 8E H, 30 is added to 08 and we get 38 H (the ASCII Code for
8) and 37 is added to 0E H to get 45 H (the ASCII Code for E).
Example 6.25. An eight bit binary number is stored in 2500 H. Write an ALP for 8085
to convert the binary number to its equivalent ASCII code. The ASCII code for most

 175

significant binary digit should be stored to 2601 H location; and the code for least
significant binary digit should be stored to 2602 H location.
Solution.
Main Program:
Label Mnemonics Operand Comments

 LXI SP, XXXX H ; Initialize the stack pointer.
 LXI H, 2500 H ; Get H-L pair with 2500 H.
 LXI D, 2601 H ; Get D-E pair with 2601 H.
 MOV A, M ; Move the content of []LHM − to

accumulator.
 MOV B, A ; Move the accumulator content to

B-register.
 RRC ; Rotate right four times
 RRC ; to shift MSD to four
 RRC ; least significant nibble
 RRC ; of accumulator.
 CALL ASCII ; Call the subroutine to convert

MSD to ASCII.
 STAX D ; Store the ASCII code of MS digit to

the memory location addressed by
D-E register pair.

 INX D ; Increment D-E register pair.
 MOV A, B ; Move the binary number again to

accumulator.
 CALL ASCII ; Call the subroutine to convert LSD

to ASCII.
 STAX D ; Store the ASCII code of LS digit to

the memory location addressed by
D-E register pair.

 HLT ; Stop processing.
Subroutine Program:

Label Mnemonics Operand Comments

ASCII ANI 0F H ; Isolate MS digit.
 CPI 0A ; Compare with 10 (0A H).
 JC NXT ; If it less than 10, jump to NXT.
 ADI 07 H ; Else add 07 H.
NXT ADI 30 H ; Add 30 H.
 RET ; Go back to main program.

6.2.4 ASCII to Binary Conversion
 The following steps are carried out to convert the ASCII code to binary (Hex):

Step I Subtract 30 H (0011 0000) from the given binary (Hex) number.
Step II If the difference after subtraction in step I is less than 10, then it is the

required binary (Hex) number.

 176

Step III If the difference after subtraction in step II is more than 10 then subtract
07 also from it. This will then give the required binary (Hex) number.

Example 6.26. An ASCII number is stored in 2500 H memory location. Write an ALP
for 8085 to convert this number into its equivalent binary (Hex) number and store it to
2501 memory location.
Solution.
Main Program:
Label Mnemonics Operand Comments

 LXI SP, XXXX H ; Initialize the stack pointer.
 LXI H, 2500 H ; Get H-L pair with 2500 H.
 MOV A, M ; Move the content of []LHM − to

accumulator.
 CALL CONV ; Call the subroutine to convert

ASCII to binary.
 INX H ; Increment H-L register pair.
 MOV M, A ; Store the binary number to

required memory location.
 HLT ; Stop processing.

Subroutine Program:
Label Mnemonics Operand Comments

CONV SUI 30 H ; Subtract 30 H from accumulator.
 CPI 0A ; Compare with 10 (0A H).
 RC ; If it less than 10 go back to main

program.
 SUI 07 H ; Else subtract 07 H.
 RET ; Go back to main program.

6.3 PROGAMS ON ADDITION AND SUBTRACTION

Now we shall take up the problems on BCD or decimal addition and subtraction of
two bytes or multibyte. These problems are self explanatory and can be understood by
considering proper logic.
Example 6.27. Write an ALP for 8085 to add two 16-bit numbers. The augend’s LS byte
is stored in 2101 H and MS byte in 2102 H. The addend’s LS and MS byte are stored in
2103 H and 2104 H respectively. The result is to be stored in 2105 H to 2107 H.
Solution.
Main Program:
Label Mnemonics Operand Comments

 LHLD 2101 H ; Load the H-L pair direct with the
contents of 2101 H and 2102 H
Locations.

 XCHG ; Exchange the contents of H-L and
D-E pair.

 LHLD 2103 H ; Load the H-L pair direct with the
contents of 2103 H and 2104 H
Locations.

 177

 MVI C, 00 H ; Store 00 H to C register for carry.
 DAD D ; Add the contents of H-L and D-E

register pair and result is in H-L
pair.

 JNC NXT ; If there is no carry after the
addition jump to NXT.

 INR C ; Increment the carry.
NXT SHLD 2105 H ; Store the contents in the required

locations.
 MOV A, C ; Move carry to accumulator.
 STA 2107 H ; Store carry in 2107 H.
 HLT ; Stop processing.

Example 6.28. Write an ALP for 8085 to add two N byte numbers. The augend’s bytes
are stored in memory locations starting at 2101 H and the addend’s bytes are stored in
memory locations starting at 2201 H. The number N is stored in memory location 2100
H. The result is to be stored in the memory locations starting at 2201 H.
Solution.
Main Program:
Label Mnemonics Operand Comments

 LXI H, 2100 H ; Get H-L pair with 2100 H.
 MOV C, M ; Move the number N to C-register

for counter.
 INX H ; Increment the H-L pair.
 LXI D, 2201 H ; Get D-E pair with 2201 H.
 XRA A ; Clear the accumulator and carry

flag.
LOOP LDAX D ; Get the addend byte to

accumulator.
 ADC M ; Add with carry the two bytes.
 MOV M, A ; Store the result in the location

addressed by H-L pair.
 INX D ; Increment the D-E pair.
 INX H ; Increment the H-L pair.
 DCR C ; Decrement C.
 JNZ LOOP ; If C is not zero, then jump to

LOOP.
 HLT ; Stop processing.

Example 6.29. Write an ALP for 8085 to add two N byte numbers. The augend’s bytes
are stored in memory locations starting at 2101 H and the addend’s bytes are stored in
memory locations starting at 2201 H. The number N is stored in memory location 2100
H. The result should in decimal form and is to be stored in the memory locations starting
at 2201 H.
Solution.
Main Program:
Label Mnemonics Operand Comments

 178

 LXI H, 2100 H ; Get H-L pair with 2100 H.
 MOV C, M ; Move the number N to C-register

for counter.
 INX H ; Increment the H-L pair.
 LXI D, 2201 H ; Get D-E pair with 2201 H.
 XRA A ; Clear the accumulator and carry

flag.
LOOP LDAX D ; Get the addend byte to

accumulator.
 ADC M ; Add with carry the two bytes.
 DAA ; Decimal adjust the accumulator for

the result in decimal form.
 MOV M, A ; Store the result in the location

addressed by H-L pair.
 INX D ; Increment the D-E pair.
 INX H ; Increment the H-L pair.
 DCR C ; Decrement C.
 JNZ LOOP ; If C is not zero, then jump to

LOOP.
 HLT ; Stop processing.

 It may be noted from this example that DAA (decimal adjust the accumulator)
instruction is used after ADC M for the conversion of the result in decimal form.
Example 6.30. Write an ALP for 8085 for multibyte (N bytes) subtraction. The number
of bytes (N) is stored in 2100 H location. The minuend bytes are stored in the memory
locations starting at 2101 H and the subtrahend bytes are stored in the memory locations
starting at 2201 H. The answer should be stored in the memory locations starting at
2101 H.
Solution.
Main Program:
Label Mnemonics Operand Comments

 LXI H, 2100 H ; Get H-L pair with 2100 H.
 MOV C, M ; Move the number N to C-register

for counter.
 INX H ; Increment the H-L pair.
 LXI D, 2201 H ; Get D-E pair with 2201 H.
 XRA A ; Clear the accumulator and carry

flag.
LOOP LDAX D ; Get the addend byte to

accumulator.
 SBB M ; Subtract with borrow the contents

of []LHM − from the accumulator
contents.

 MOV M, A ; Store the result in the location
addressed by H-L pair.

 INX D ; Increment the D-E pair.
 INX H ; Increment the H-L pair.

 179

 DCR C ; Decrement C.
 JNZ LOOP ; If C is not zero, then jump to

LOOP.
 HLT ; Stop processing.

Decimal Subtraction
 It may be noted from the above example that SBB M (subtract with borrow)
instruction is used for the subtraction. The result will not be obtained in the decimal form
as DAA instruction can not be used after Subtract instructions. For decimal subtractions,
the subtrahend number should be converted to its equivalent 10’s complement which will
then be added to minuend.
Example 6.31. Write an ALP for 8085 to subtract 78 from 96. The answer in decimal
form should be stored in 2100 H memory location.
Solution.
Main Program:
Label Mnemonics Operand Comments

 MVI C, 96 H ; Get 96 in C register.
 MVI B, 78 H ; Get 78 in B register.
 MVI A, 99 H ; Get 99 in accumulator.
 SUB B ; Subtract the content of B-register

from 99 to get the 9’s complement
of 78.

 INR A ; Increment accumulator to get 10’s
complement.

 ADD C ; Add the content of C to the
accumulator.

 DAA ; Decimal adjust the accumulator, to
get the answer in decimal for.

 STA 2100 H ; Store the answer in decimal form at
2100 H location.

 HLT ; Stop processing.
Example 6.32. Write an ALP for 8085 for multibyte (N bytes) decimal subtraction. The
number of bytes (N) is stored in 2100 H location. The minuend bytes are stored in the
memory locations starting at 2101 H and the subtrahend bytes are stored in the memory
locations starting at 2201 H. The answer obtained in decimal form should be stored in
the memory locations starting at 2101 H.
Solution.
Main Program:
Label Mnemonics Operand Comments
 LXI SP, XXXX H ; Initialize the stack pointer.

 LXI H, 2100 H ; Get H-L pair with 2100 H.
 MOV C, M ; Move the number N to C-register

for counter.
 INX H ; Increment the H-L pair.
 LXI D, 2201 H ; Get D-E pair with 2201 H.
 LDAX D ; Get the subtrahend byte in

accumulator.

 180

 MOV B, A ; Move the accumulator content to B-
register.

 MVI A, 99 H ; Store 99 to accumulator.
 SUB B ; Get 9’s complement of the

subtrahend.
 INR A ; Get 10’s complement of the

subtrahend.
 ADD M ; Add 10’s complement of the

subtrahend to minuend.
 DAA ; Give the answer in decimal form.

 PUSH PSW ; Push the carry to stack.
 MOV M, A ; Store the result in the location

addressed by H-L pair.
LOOP INX D ; Increment the D-E pair.

 INX H ; Increment the H-L pair.
 LDAX D ; Get the second number to

accumulator.
 MOV B, A ; Store it to B-register.
 MVI A, 99 H ; Store 99 to accumulator.
 SUB B ; Get 9’s complement.
 MOV B, A ; Store it to B-register.
 POP PSW ; Get the carry of the previous

addition from the stack.
 MOV A, B ; Get the B-register content to

accumulator.
 ADC M ; Add with carry.
 DAA ; Give the answer in decimal form.
 PUH PSW ; Store the carry to stack for further

addition.
 MOV M, A ; Store the result in the memory

location addressed by H-L register
pair.

 DCR C ; Decrement the content of C-
register.

 JNZ LOOP ; If C is not zero, then jump to
LOOP.

 HLT ; Stop processing.
6.4 PROGAMS TO FIND LARGEST OR SMALLEST NUMBER
Example 6.33 Write an ALP for 8085 to find the larger of two numbers stored in
memory locations 2101 H and 2102 H. Store the result in memory location 2103 H.
Solution.
Main Program:
Label Mnemonics Operand Comments
 LXI H, 2101 H ; Get H-L pair with 2101 H.

 MOV A, M ; Move the first number in
accumulator.

 181

 INX H ; Increment the H-L pair.
 CMP M ; Compare the second number with

first number.
 JNC NXT ; If the accumulator content is larger

then jump to NXT.
 MOV A, M ; Else move []LHM − to accumulator.
NXT INX H ; Increment the H-L pair.
 MOV M, A ; Store the result in the required

memory location.
 HLT ; Stop processing.

 Note: To get the smaller number from the given two numbers, use the instruction
JC in place of JNC.
Example 6.34. Write an ALP for 8085 to find the largest number among three numbers
stored in memory locations staring at 2101 H. Store the result in memory location
2104H.
Solution.
Main Program:
Label Mnemonics Operand Comments
 LXI H, 2101 H ; Get H-L pair with 2101 H.

 MOV A, M ; Move the first number in
accumulator.

 INX H ; Increment the H-L pair.
 CMP M ; Compare the second number with

first number.
 JNC NXT ; If the accumulator content is larger

then jump to NXT.
 MOV A, M ; Else move []LHM − to accumulator.
NXT INX H ; Increment the H-L pair.
 CMP M ; Compare the third number with the

larger of first two numbers.
 JNC NXT1 ; If the accumulator content is larger

then jump to NXT1.
 MOV A, M ; Else move []LHM − to accumulator.
NXT1 INX H ; Increment the H-L pair.

 MOV M, A ; Store the result in the required

memory location.
 HLT ; Stop processing.

Example 6.35. Write an ALP for 8085 to find the largest number among a series of N
numbers stored in memory locations staring at 2101 H. The number N is stored in
memory location 2100 H. Store the result in memory location 2201 H.
Solution.
Main Program:
Label Mnemonics Operand Comments

 182

 LXI H, 2100 H ; Get H-L pair with 2100 H.
 MOV C, M ; Store the number N in C-register

which will be used as the counter.
 INX H ; Increment the H-L pair.
 MOV A, M ; Move the first number in

accumulator.
 DCR C ; Decrement count.
LOOP INX H ; Increment the H-L pair.
 CMP M ; Compare the second number with

first number.
 JNC NXT ; If the accumulator content is larger

then jump to NXT.
 MOV A, M ; Else move []LHM − to accumulator.
NXT DCR C ; Decrement count.
 JNZ LOOP ; Jump to LOOP if not zero.
 STA 2201 H ; Store the result in 2201 H.
 HLT ; Stop processing.

6.5 PROGAMS TO ARRANGE A GIVEN SERIES IN ASCENDING OR

DESCENDING ORDER
Example 6.36. Write an ALP for 8085 to arrange a series of N-numbers in descending
order. The number N is stored in memory location 2100 H. The series is stored in
memory location starting at 2101 H. The result is to be stored in memory locations
starting at 2201 H.
Solution.
Main Program:
Label Mnemonics Operand Comments

 LXI SP, XXXX H ; Initialize stack pointer.
 LXI D, 2201 H ; Get D-E pair with 2201 H.

 LXI H, 2100 H ; Get H-L pair with 2100 H.
 MOV B, M ; Store the count N in B-register.
START LXI H, 2100 H ; Get H-L pair with 2100 H.

 MOV C, M ; Store the number N in C-register
also.

 INX H ; Increment the H-L pair.
 MOV A, M ; Move the first number in

accumulator.
 DCR C ; Decrement count.
LOOP INX H ; Increment the H-L pair.
 CMP M ; Compare the second number with

first number.
 JNC NXT ; If the accumulator content is larger

then jump to NXT.
 MOV A, M ; Else move []LHM − to accumulator.
NXT DCR C ; Decrement count.
 JNZ LOOP ; Jump to LOOP if not zero.

 183

 STAX D ; Store the largest number in
memory location addressed by D-E
register pair.

 CALL SUBR ; Call the subroutine SUBR to put
00 H to the memory location where
the largest number was found.

 INX D ; Increment D-E register pair.
 DCR B ; Decrement B.
 JNZ START ; Jump to START if not zero.
 HLT ; Stop processing.

Subroutine Program:
Label Mnemonics Operand Comments

 SUBR LXI H, 2100 H ; Get H-L pair with 2100 H.
 MOV C, M ; Store the number N is C-register

which will be used as the counter.
AGAIN INX H ; Increment the H-L pair.
 CMP M ; Compare the number with the

largest number obtained in the
main program.

 JZ NXT ; If it is largest jump to NXT.
 DCR C ; Decrement count.
 JNZ AGAIN ; If counts not complete jump to

AGAIN.
 MVI A, 00 H ; Store 00 H to the accumulator.
 MOV M, A ; Put 00 H to the location at which

the largest number was found.
 RET ; Go back to main program.

Example 6.37. Write an ALP for 8085 to arrange a series of N-numbers in ascending
order. The number N is stored in memory location 2100 H. The series is stored in
memory location starting at 2101 H. The result is to be stored in memory locations
starting at 2201 H.
Solution.
Main Program:
Label Mnemonics Operand Comments

 LXI SP, XXXX H ; Initialize stack pointer.
 LXI D, 2201 H ; Get D-E pair with 2201 H.

 LXI H, 2100 H ; Get H-L pair with 2100 H.
 MOV B, M ; Store the count N in B-register.
START LXI H, 2100 H ; Get H-L pair with 2100 H.

 MOV C, M ; Store the number N in C-register
also.

 INX H ; Increment the H-L pair.
 MOV A, M ; Move the first number in

accumulator.
 DCR C ; Decrement count.
LOOP INX H ; Increment the H-L pair.

 184

 CMP M ; Compare the second number with
first number.

 JC NXT ; If the accumulator content is
smaller then jump to NXT.

 MOV A, M ; Else move []LHM − to accumulator.
NXT DCR C ; Decrement count.
 JNZ LOOP ; Jump to LOOP if not zero.
 STAX D ; Store the largest number in

memory location addressed by D-E
register pair.

 CALL SUBR ; Call the subroutine SUBR to put
FF H to the memory location
where the smallest number was
found.

 INX D ; Increment D-E register pair.
 DCR B ; Decrement B.
 JNZ START ; Jump to START if not zero.
 HLT ; Stop processing.

Subroutine Program:
Label Mnemonics Operand Comments

 SUBR LXI H, 2100 H ; Get H-L pair with 2100 H.
 MOV C, M ; Store the number N is C-register

which will be used as the counter.
AGAIN INX H ; Increment the H-L pair.
 CMP M ; Compare the number with the

smalest number obtained in the
main program.

 JZ NXT ; If it is smallest jump to NXT.
 DCR C ; Decrement count.
 JNZ AGAIN ; If counts not complete jump to

AGAIN.
 MVI A, FF H ; Store FF H to the accumulator.
 MOV M, A ; Put FF H to the location at which

the smallest number was found.
 RET ; Go back to main program.

6.6 PROGRAMS ON MULTIPLICATION
 There are two methods for multiplication of two numbers.
 1. Repetitive Addition Method
 2. Shift and Add Method
Repetitive Addition Method
 In this method multiplicand is added by the multiplier times.
 For example, we wish to multiply 8 and 4 numbers. So add 08 to 00 for four times.
i.e.

 185

Shift and Add Method
 For example, we wish to multiply two decimal numbers 32 and 12 as:

 In this example, first of all multiplicand 32 is multiplied by 2 and the result 64 is
copied in the temporary register (or written on the scratch pad). Again 32 is multiplied by
1 and result 32 is shifted left by one digit to make it 32o. Now 64 and 320 are added and
we get the answer 384.
 Similar method used in binary multiplication. In binary multiplication, when a
multiplicand is multiplied by 1, we get the product equal to multiplicand. When a
multiplicand is multiplied by 0, we the product zero. For example 08 and 04 are
multiplied as:

The answer is 0020 H (3210). It may be noted that the answer is not in BCD.
This method may further be illustrated using the following flow chart.

 186

Fig. 6.1

 187

Example 6.38. Write an ALP for 8085 to multiply any number (stored in memory
location 2101 H) by 2 and store the result in 2102 H memory location.
Solution.
Program:
Label Mnemonics Operand Comments

 LXI H, 2101 H ; Get the H-L pair with 2101 H.
 MOV A, M ; Move the number in accumulator.
 STC ; Set the carry flag.
 CMC ; Complement the carry (it clear the

carry.
 RAL ; Rotate accumulator with carry i.e.

it multiplies the accumulator
content by two.

 INX H ; Increment the H-L pair.
 MOV M, A ; Store the result in 2102 H memory

location.
 HLT ; Stop processing.

Example 6.39. Write an ALP for 8085 to multiply two numbers using repetitive addition
method. The two numbers are in memory locations 2101 H and 2102 H. Store the result
in 2103 H and 2104 H.
Solution.
Main Program:
Label Mnemonics Operand Comments
 LXI H, 2101 H ; Get H-L pair with 2101 H.
 MOV B, M ; Get first number in B-register.
 INX H ; Increment H-L pair.
 MOV A, M ; Get the second number in

accumulator.
 CMP B ; Compare the two numbers.
 JNC NXT ; If A < B then use A as counter.
 MVI D, 00 H ; Move 00 to D register.
 MOV E, B ; Move first number to E register.
 JMP NXT1 ; Jump to NXT1.
NXT MVI D, 00 H ; If A>B, so B should be used as

counter.
 MOV E, A ; Store accumulator content in E-

register.
 MOV A, B ; Store B-register content in

accumulator.
NXT1 LXI H, 0000 H ; Put 00 to H and L registers.
 ORA A ; ORing of A with A to find if A =

00 H.
 JZ END ; If zero jump to End.
 DAD D ; Add the contents of H-L pair with

D-E pair and the result is in H-L
pair.

 188

 DCR A ; Decrement count.
 JNZ LOOP ; If not zero jump to LOOP.
END SHLD 2103 H ; Store the result.
 HLT ; Stop processing.

Example 6.40. Write an ALP for 8085 to multiply two numbers using shift and add
method. The two numbers are in memory locations 2101 H and 2102 H. Store the result
in 2103 H and 2104 H.
Solution.
Main Program:
Label Mnemonics Operand Comments
 LXI H, 2101 H ; Get H-L pair with 2101 H.
 MOV E, M ; Get first number in E-register.
 MVI D, 00 H ; Extend to 16 bits.
 INX H ; Increment H-L pair.
 MOV A, M ; Get the multiplier in accumulator.
 LXI H, 0000 H ; Put 00 to H and L registers.
 MVI B, 08 H ; Get count = 08.
MULT DAD H ; Multiplicand = 2 x Multiplicand..
 RAL ; Rotate accumulator left to find if

most significant bit is 1.
 JNC NXT ; If no carry jump to NXT.
 DAD D ; Get Product = product +

multiplicand.
NXT DCR B ; Decrement B.
 JNZ MULT ; If not zero jump to MULT.
 SHLD 2103 H ; Store the result in 2103 H and

2104 H .
 HLT ; Stop processing.

6.7 PROGRAM ON 8-BIT DIVISION
 To divide 16 bit dividend with 8 bit divisor, the divisor is subtracted from the 8
most significant bits of the dividend. If there is no borrow, the bit of the quotient is set to
1, otherwise 0. The dividend is then shifted left by one bit before each trial of subtraction.
The dividend and quotient share a register pair. Due to shift of dividend one bit of the
register falls vacant in each subtraction. The quotient is stored in vacant bit positions. It is
illustrated by the flow chart shown in figure 6.2.
 If the dividend of the division is an 8-bit number, then it is extended to a 16-bit
number by placing zeros in the MSBs positions.

 189

 Fig. 6.2

 190

Example 6.41. Write an ALP for 8085 to divide a 16-bit number by an 8-bit number. The
dividend bytes are stored in memory locations 2101 H and 2102 H. (LS byte in 2101 H
and MS byte in 2102 H). The divisor is stored in memory location 2103 H. The quotient
is to be stored in the memory location 2104 H and the remainder is to be stored in the
memory location 2105 H.
Solution.
Main Program:
Label Mnemonics Operand Comments
 LHLD 2101 H ; Get 16-bit dividend in H-L pair.
 LDA 2103 H ; Get divisor in accumulator.
 MVI C, 08 H ; Get count 08 in C-register.
 MVI D, 00 H ; Quotient = 00.
 MOV B, A ; Keep the divisor in B-register also.
LOOP DAD H ; Shift dividend left by one bit.
 MOV A, D ; Keep the quotient in accumulator.
 ADD A ; Shift quotient left by one bit.
 MOV D, A ; Store the quotient in D-register.
 SUB B ; Perform trial subtraction.
 JC NXT ; If carry then dividend = previous

dividend.
 MOV H, A ; Put most significant bits of

dividend in register H.
 INR D ; Increment quotient by 1.
NXT DCR C ; Decrement C.
 JNZ LOOP ; If not zero jump to LOOP.
 MOV L. D ; Store the quotient in L-register.
 SHLD 2104 H ; Store the result in 2104 H and

2105 H .
 HLT ; Stop processing.

6.8 MISCELLANEOUS PROGRAMS
Example 6.42. Write an ALP for 8085 to find the square of a given number stored in
memory location 2101 H and the result is to be stored in memory location 2102 H. Use
Look-up table starting at 2200 H.
Solution.
Main Program:
Label Mnemonics Operand Comments
 LXI D, 2200 H ; Get D-E pair with 2200 H (Starting

address of the look-up table).
 LDA 2101 H ; Get the number in accumulator.
 MOV L, A : Load the number to L-register.
 MVI H, 00 H ; Get 00 H to H-register.
 DAD D ; Get effective address in H-L

register pair.
 MOV A, M ; Get the result in accumulator.

 191

 STA 2102 H ; Store the result in the required
memory location.

 HLT ; Stop processing.

Look-up table:
 Location Data

2200 H 00 H

 2201 H 01 H
 2202 H 04 H
 2203 H 09 H
 2204 H 10 H
 2205 H 19 H
 2206 H 24 H
 2207 H 31 H
 2208 H 40 H
 2209 H 51 H
 220A H 64 H
 220B H 79 H
 220C H 90 H
 220D H A9 H
 220E H C4 H
 220F H E1 H
Example 6.43. Write an ALP for 8085 to find the square of a given number stored in
memory location 2101 H and the result is to be stored in memory location 2102 H. Use
the addition of successive odd integers.
Solution.
Main Program:
Label Mnemonics Operand Comments
 LDA 2101 H ; Get the number in accumulator.
 MVI L, 00H : Load 00 H to L-register.
 ORA L ; Find if number is zero.
 JZ END ; If number is zero then no need to

find the square and jump to END.
 MOV C, A ; Move the number to C-register.
 MOV A, L ; Move the content of L-reg to

accumulator so that square is zero.
 MVI B, 01 H ; Move 01 to B-register (first odd

number).
LOOP ADD B ; Add next odd number.
 INR B ; Find next odd number to add
 INR B ; 02.
 DCR C ; Decrement C-register contents.
 JNZ LOOP ; Continue if not zero.
END STA 2102 H ; Store the result in the memory

location 2102 H.

 192

 HLT ; Stop processing.
Example 6.44. Write an ALP for 8085 to find the square root of a given number (perfect
positive square) stored in memory location 2101 H and the result is to be stored in
memory location 2102 H. Use the subtraction of successive odd integers.
Solution.
Main Program:
Label Mnemonics Operand Comments
 LDA 2101 H ; Get the number in accumulator.
 ORA A ; Find if number is zero.
 JZ END ; If number is zero then no need to

find the square root and jump to
END.

 MVI B, 01 H ; Move 01 to B-register (first odd
number).

 MVI C, 01 H ; Initial value of square root as one.
LOOP SUB B ; Subtract next odd number.
 JZ END ; If number is zero then jump to

END.
 INR B ; Find next odd number to add
 INR B ; 02.
 INR C ; Decrement square root value by 1.
 JNC LOOP ; Continue if no carry.
END MOV A, C ; Store the result in accumulator.
 STA 2102 H ; Store the result in the memory

location 2102 H.
 HLT ; Stop processing.
Example 6.45. Write an ALP for 8085 to find the Fibonacci series. Sixteen terms of this
series are to be store in the memory locations starting at 2101 H. Let 00 H and 01 H
data are stored in memory locations 2101 H and 2102 H respectively before the
execution of the program.
Solution. The terms of Fibonacci series are given as:
 1, 1, 2, 3, 5, 8, 13, 21,.
 This sequence is defined by assuming first two terms have the same value 1, and
each term afterwards is the sum of the previous two terms, that is,
 1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8, and so on.
 The required terms of the

Main Program:
Label Mnemonics Operand Comments
 MVI C, 10 H ; Decimal number 16 (10 H) is stored

in C-register which will be used as
counter.

 LXI H, 2100 H ; Get H-L pair with 2100 H.
 MOV A, M ; Move first data to accumulator.
 INX H ; Point to next data.
LOOP ADD M ; Get next term of the series.

 193

 INX H ; Point to the next memory location
for storing the next term.

 MOV M, A ; Store the next term.
 DCX H ; Get previous term of the Fibonacci

series.
 MOV A, M ; Get this term in accumulator.
 INX H ; Point to the next memory location.
 DCR C ; Decrement count.
 JNZ LOOP ; If not zero jump to LOOP.
 HLT ; Stop processing.

 Data stored before the execution of the program.
 2100 H 00 H
 2101 H 01 H

PROBLEMS
1. Write an assembly language program of 8085 to fill the RAM area from 2500 H to

25FF H with a byte 33 H.
2. Sixteen bytes of data are stored in memory locations 2001 H to 2010 H. Write an

assembly language program of 8085 to transfer this block of data to 2006 H to 2015
H.

 (Hint: In this case data will be transferred in the reverse order otherwise some of
the data will coincide.)

3. Write a program (WAP) in assembly language of 8085 to compare two hexadecimal
numbers, stored in 2001 H and 2002 H memory locations, for equality. If the
numbers are equal, the number itself will be stored in 2003 H memory location, else
00 H will be stored in the memory location 2003 H.

4. WAP in assembly language of 8085 to test 3rd bit (D3 bit) of a byte stored at 2000 H
memory location. If the bit D3 is zero store 00 at 2101 H else store the same
number at 2101 H.

5. Write an assembly language program (ALP) of 8085 to find the logical AND and
Logical OR of 26 H and 39 H. Store the result in 2500 H and 2501 H.

6. Write an ALP of 8085 to load EE H to the memory locations starting at 2501 H.
The length of data bytes is given in 2500 H memory location.

7. Write an ALP for 8085 to add two 8-bit numbers stored in memory locations 2101
H and 2102 H. The result should be stored in 2103 H and the carry if any should be
stored in 2104 H.

8. Write an assembly language program for 8085 to add two 8 bit numbers stored in
memory locations 2101 H and 2102 H. The answer is required in decimal form and
it should be stored in 2103 H and the carry if any should be stored in 2104 H.

9. Write an ALP for 8085 to add 833 and 776 decimal numbers. The result should be
stored in 2101 H to 2103 H memory locations. The memory location 2103 H should
store the carry bit if any.

 (Hint: First convert the decimal numbers 833 and 776 to hexadecimal numbers.)
10. Write an ALP for 8085 to subtract an 8 bit number (stored in 2101 H memory

location) from another 8 bit number (stored in 2102 H memory location). The

 194

answer should be stored in 2103 H and the borrow bit if any should be stored in
2104 H.

11. Repeat the problem 10 to get the result in decimal form.
12. Write an ALP for 8085 to find smaller of two numbers stored in 2301 H and 2302

H. Store the smaller number in memory location 2303 H.
13. Write an ALP for 8085 to find the smallest of the three numbers stored in memory

locations starting at 2301 H. Store he smallest number in 2304 H.
14. Write an ALP for 8085 to find the smallest number among a series of 16 numbers

stored in the memory locations starting at 2301 H. The number 16 (10 H) is stored
in 2300 H. The smallest number should be should be stored in 2401 H.

15. Write an ALP to find 13 terms of Fibonacci series. The terms of the series are to be
stored in the memory locations starting at 2501 H.

16. Write an ALP for 8085 to shift an 8-bit number left by two bits. The number is
stored in memory location 2501 H and the result is to be stored in 2502 H memory
location.

 (Hint: Keep the number in accumulator and use ADD A instruction twice.)
17. Write an ALP for 8085 to shift a 16-bit number left by two bits. The number is

stored in memory locations 2501 H and 2502 H. The result is to be stored in 2503 H
and 2504 H memory locations.

7
Interrupt Instructions of 8085

 In the preceding chapters the architecture, instruction set and programming details
of 8085 microprocessor were discussed. The microprocessor forms the parts of
microcomputers. Many complicated and sophisticated operations can be performed by
using the microprocessor based systems. These systems have the facilities to transfer the
data from the microprocessor to the outside world or vice-versa. The transfer of data
takes place through the data bus with the help of address and control buses. Thus special
circuitry is needed to convert data from a wide range of input devices into suitable form
for microprocessor buses. The circuitries used between the microprocessor and
input/output devices are known as interfaces. This chapter deals how the external devices
(peripherals) get connected to the microprocessor. In addition, different ways of data
transfer from the microprocessor to the peripheral devices and vice-versa, and the restart
instructions will also be discussed.
7.1 METHODS OF I/O OPERATIONS
 There are two ways for the transfer of data from microprocessor to I/O devices
and vice-versa.

1. Memory Mapped I/O
2. I/O Mapped I/O or Isolated I/O

7.1.1 Memory Mapped I/O
Memory Mapped I/O system is used in smaller system. In this system there is

only one address space, some addresses are assigned to memories and some addresses to
I/O devices i.e. the addresses to I/O devices are different from the addresses which have
been assigned to memories. In other words the I/O devices and memory share the
memory map, with some address reserved for the I/O devices and rest for the memory.
This scheme is shown in figure 7.1. The microprocessor use R/W signals to determine
the direction of data flow. The main advantage of this scheme is that it does not require
additional decoding circuitry and the set of instructions may be used to fetch data either
from the I/O devices or from the memory locations.
 Following instructions may be used for the data transfer in this scheme:

MOV M, A It moves the contents of accumulator to MH-L. If H-L pair contains

the address of memory location, then the data will be transferred to
memory location; if on the other hand H-L pair contains the
address of the I/O devices, then the accumulator data will be
transferred to I/O devices.

 196

MOV A, M It moves the contents of MH-L to accumulator. If H-L pair contains
the address of memory location, then the data will be transferred
from memory location; similarly if H-L pair contains the address
of the I/O devices, then the data from I/O devices will be
transferred to accumulator.

STA address It stores the contents of accumulator to addressed location. If the
address represents the address of memory location then the
accumulator contents will be stored to memory location; if on the
other hand address represents the address of the I/O devices, then
the accumulator data will be transferred to I/O devices.

LDA address It stores the addressed contents to the accumulator. If the address
represents the address of memory location then the contents stored
in memory location will be transferred to accumulator; if on the
other hand address represents the address of the I/O devices, then
the data from the I/O devices will be transferred to the
accumulator.

Fig. 7.1

Many other instructions like LDAX, STAX and other arithmetic and logic
instructions etc may also be used in this memory mapped I/O systems.
7.1.2 I/O Mapped I/O or Isolated I/O

 197

Larger systems use this technique for the data communication to I/O devices. Figure 7.2
shows this system used in 8085 microprocessor. In this technique the

 Fig 7.2

microprocessor treats the memory and I/O devices separately, using different control

lines for each of them. In 8085A the MIO / signal is used for this purpose. If this signal
is low (0), it represents the memory. However, if this signal is high (1), it represents the

I/O operations. RD and WR signals in association with MIO / signal help in performing
I/O read/write operations or memory read/write operations. Table 7.1 shows the
operations of these signals.

Table 7.1

RD WR MIO / Operations Address

0 1 0 MEMR Memory Read A15-A0
1 0 0 MEMW Memory Write A15-A0
0 1 1 IOR I/O Read A7-A0
1 0 1 IOW I/O Write A7-A0

 Figure 7.3 shows the generation of MEMR (Memory Read), MEMW (Memory

Write), IOR (I/O Read) and IOW (I/O Write) signals.

 198

 In this scheme, special instructions are used to perform the I/O operations. The
special instructions are:

IN XX H (XX H is the Port address of 1 byte , which is in between
00 H to FF H)

OUT XX H (XX H is the Port address of 1 byte , which is in between
00 H to FF H)

 The address XX H of the I/O port is duplicated on both the high and low order

address bus and the signal MIO / ensures that the memory location corresponding to that
address (XXXX H) does not respond.

Fig. 7.3

 Comparison of Memory Mapped I/O and I/O Mapped I/O is given in table 7.2.

Memory Mapped I/O I/O Mapped I/O
1. Large Number of instructions like

MOV A, M, MOV M, A, LDA, STA
etc are used for the data transfer.

2. Data transfer is possible between any

register of C.P.U. and I/O devices.

3. Arithmetic and logic operations can be

performed with the data of I/O Ports
using with the instructions like ORA
M, XRA M, ANA M, ADD M, SUB M
etc.

Only two instructions IN Port, OUT Port
are used for the data transfer from
microprocessor to I/O devices and vice
versa.

Data transfer is possible only between
Accumulator and I/O devices.

Arithmetic and logic operations can not be
performed in this scheme.

 199

4. Memory mapping of 64 K byte is shared

between system memory and I/O ports.

5. 16-bit address lines are needed.

6. It takes different T-states depending on

the instructions.

256 (FF H) I/O devices may be interfaced.

8-bit address lines are needed.

It takes 10 T-states for its execution.

7.2 DATA TRANSFER SCHEMES
 In microprocessor based systems several input / output devices are connected and
data transfer may take place between microprocessor and memory, microprocessor and
I/O devices and memory & I/O devices. Not much of the problems arise for the data
communication between microprocessor and memory as same technology is used in the
manufacturing of memory and microprocessor. The speed of the memory is almost
compatible with the speed of microprocessor. But for the data transfer between the
microprocessor and I/O devices, the problems arise due to mismatch of the speed of the
I/O devices and the speed of microprocessor or memory. To overcome the problem of
speed mismatch between the microprocessor and I/O devices following data transfer
schemes (fig. 7.4) may be considered. The data transfer schemes were categorized
depending upon the capabilities of I/O devices for accepting serial or parallel data.

Fig. 7.4

 200

 The 8085 microprocessor is a parallel device i.e. it transfers eight bits of data
simultaneously over eight data lines (parallel I/O mode). However in many situations, the
parallel I/O mode is either impractical or impossible. For example, parallel data
communication over a long distance becomes very expensive. Similarly, parallel data
communication is not possible with devices such as CRT terminal or Cassette tape etc.
For these devices, therefore, serial I/O mode is used which transfer a single bit on a single
line at a tine. For serial data transmission, 8-bit parallel word is converted to a stream of
eight serial bit using parallel-to-serial conversion. Similarly, in serial reception of data,
the microprocessor receives a stream of 8-bit one by one which are then converted to 8-
bit parallel word using serial-to-parallel conversion. The parallel data transfer will now
be discussed in the following sub-sections.
7.2.1 Programmed I/O Data Transfer
 This method of data transfer is generally used in the simple microprocessor
systems where speed is unimportant. This method uses instructions to get the data into or
out of the microprocessor. The data transfer can be synchronous or asynchronous
depending upon the type and the speed of the I/O devices.

Synchronous type of data transfer can be used when the speed of the I/O devices
matches with the speed of the microprocessor. The common clock pulse synchronizes the
microprocessor and the I/O devices. In such data transfer scheme because of the matching
of the speed, the microprocessor does not have to wait for the availability of the data; the
microprocessor immediately sends data for the transfer as soon as the microprocessor
issues a signal.

The asynchronous data transfer method is used when the speed of the I/O devices
is slower than the speed of the microprocessor. Because of the mismatch of the speed, the

 201

internal timing of the I/O device is independent from the microprocessor and thus two

Fig. 7.5
units are said to be asynchronous to each other. The asynchronous data transfer is
normally implemented using ‘handshaking’ mode. In the handshaking mode some signals
are exchanged between the I/O device and microprocessor before the data transfer takes
place. The microprocessor has to check the status to the input/output device, if the device
is ready for the data transfer. The microprocessor initiates the I/O device to get ready; the
status of the I/O device is continuously checked by the microprocessor till the I/O device
becomes ready, the microprocessor sends instructions to transfer the data. Flow chart for
this mode of data transfer is shown in figure 7.5.

Fig. 7.6 illustrates the asynchronous handshaking process to transfer the data from
the microprocessor to I/O device. In this figure, the microprocessor sends a ready signal
to I/O device. When the device is ready to accept the data, the I/O device sends an ‘ACK’
(Acknowledge) signal to microprocessor indicating that the I/O device has acknowledged
the ‘Ready’ signal and is ready for the transfer of data.

 202

Fig. 7.6

Figure 7.7 shows the asynchronous handshaking process to transfer the data from the I/O
device to microprocessor. In this case I/O device issues the ready signal to
microprocessor indicating that I/O device is ready to send the data to microprocessor. In
response to this signal, valid data signal is sent by the microprocessor to I/O device and
then the valid data is put on the data bus for the transfer.

Fig. 7.7

7.2.2 Interrupt Driven I/O Data Transfer
In the programmed I/O data transfer method discussed above, the microprocessor is busy
all the time in checking for the availability of data from the slower I/O devices and also

in checking if I/O device is ready for the data transfer. In other words in this data transfer
scheme, some of the microprocessor time is wasted in waiting while an I/O device is

getting ready. The interrupt driven I/O data transfer method is efficient as no
microprocessor time is wasted in waiting for an I/O device to be ready. The I/O device

informs the microprocessor for the data transfer whenever the I/O device is ready. This is
achieved by interrupting the microprocessor. The interrupt is hardware facilities provided

on the microprocessor. In the beginning the microprocessor initiates data transfer by
requesting the I/O device ‘to get ready’ and then continue executing its original program
rather wasting its time by checking the status of I/O device. Whenever the device is ready

to accept or supply data, it informs the processor through a control signal known as

 203

interrupt signal. In response to this interrupt signal, the microprocessor sends back an
interrupt acknowledge signal to the I/O device indicating that it received the request (Fig.
7.8). It then suspends its job after executing the current instruction. It saves the contents

 Fig. 7.8

of program counter and status to stack and jumps to the subroutine program. This
subroutine program is called Interrupt Service Subroutine (ISS) program. The ISS saves
the processor status into stack; and after executing the instruction for the data transfer, it
restores the processor status and then returns to main program. The flow chart for this
method of data transfer is shown in figure 7.9.

 204

Fig. 7.9
 As already discussed, several input/output devices may be connected to
microprocessor using Interrupt Driven Data Transfer Scheme. Following interrupt request
configuration may arise while interfacing the I/O devices to microprocessor.

1. Single Interrupt system
2. Multi Interrupt System

1. Single Interrupt System
 When only one interrupt line is available with the microprocessor and several I/O
devices are to be connected, then the method is known as Single Interrupt System. Figure
7.10(a) shows the way to connect several devices to one active low input interrupt

terminal (INTR) of the microprocessor. However, to connect the several I/O devices to
active high interrupt terminal (INTR) is shown in figure 7.10(b). In the active low

interrupt line of the microprocessor the devices are connected to INTR terminal through
different open collector NOT gates; when any of the devices is active it provides a low

 205

signal to INTRenabling the interrupt line. Similarly, in the active high interrupt line the
I/O devices are connected through an OR gate. When any of the device is high the output
of OR gate sends a high signal to interrupt line (INTR).

Fig. 7.10(a)

Fig. 7.10(b)

 When the interrupt line is active in either of the two methods discussed above,
then the microprocessor will not know which device has sent the interrupt signal. Three
techniques are commonly used to solve the problem for the microprocessor that is
requesting the interrupt and resolving any simultaneous requests by two or more devices.
These are:

1. Polling: The interrupt signal from each device can be used to set one bit of a
register wired as an input port. When an interrupt occurs, the ISS polls this
port to see who requested service. A priority is automatically established by
the order of polling. This technique is very simple but has the negative of
degrading response time.

2. Daisy Chain: This technique has been shown in figure 7.11. In this method
each I/O device has an Interrupt Enable Input (IEI) and an Interrupt Enable
Output (IEO). An interrupt request can be made only if IEI is high. A serial

 206

connection like a chain of all the I/O devices is made. The highest priority I/O
device is placed at the first position followed by the lower priority devices in
sequence. If any device sends an interrupt signal i.e. low to the interrupt line,
then the INTR line of the processor is enabled. The interrupt acknowledge
signal (INTA) is enabled in response to low INTR line. In figure 7.11, device
2 is requesting an interrupt causing its IEO to be low. This in turn disables
devices 3 and 4. It may be noted that device 1 is still able to request an
interrupt because it has a higher priority. The interrupt acknowledge signal
can be used to reset IEO of the interrupting device.

Fig. 7.11

3. Priority Interrupt Controller (PIC) : In this method several I/O devices may
be connected to a single interrupt line through programmable interrupt
controller (IC 8259). Up to 8 input/output devices may be connected to the
microprocessor. If more than 8 I/O devices to be connected, more PICs
(programmable interrupt controllers) are used in cascade. The details of PIC
will be discussed in a later chapter.

2. Multi Interrupt System
 When the microprocessor has several interrupt terminals and one I/O device is to
be connected to each interrupt terminal, then it is known as multi interrupt system. In this
scheme, the number of I/O devices to be connected to the interrupt lines should be equal
to or less than the number of interrupt terminals. In this way one device is connected to
each level of interrupt. So when a device interrupts the microprocessor, it immediately
knows which device has interrupted. Such an interrupt scheme is known as vectored
interrupt.

7.2.3 Direct Memory Access (DMA) Data Transfer
 In programmed I/O or interrupt driven I/O methods of data transfer between the
I/O devices and external memory is via the accumulator. For bulk data transfer from I/O

 207

devices to memory or vice-versa, these two methods discussed above are time consuming
and quite uneconomical even though the speed of I/O devices matches with the speed of
microprocessor; since the data is first transferred to accumulator and then to concerned
device. The Direct Memory Access (DMA) data transfer method is used for bulk data
transfer from I/O devices to microprocessor or vice-versa. In this method I/O devices are

 Fig. 7.12

allowed to transfer the data directly to the external memory without being routed through
accumulator. For this the microprocessor relinquishes the control over the data bus and
address bus, so that these can be used for transfer of data between the devices. For the
data transfer using DMA process, a request to the microprocessor by the I/O device is
sent and on receipt of such request, the microprocessor relinquishes the address and data
buses and informs the I/O devices of the situation by sending Acknowledge signal as
shown in figures 7.12 and 7.13. The I/O device withdraws the request when the data
transfer between the I/O device and external memory is complete.

 Fig. 7.13

 208

 It may be mentioned here that DMA transfer the data of the following types:

• Memory to I/O device
• I/O device to memory
• Memory to memory
• I/O device to I/O device

 For transferring the data through DMA, an interfacing chip known as DMA
Controller is used with the microprocessor that helps to generate the addresses for the
data to be transferred from the I/O devices (Fig. 7.14). The peripheral device sends the
request signal (DMARQ) to the DMA controller and the DMA controller in turn passes it
to the microprocessor (HOLD signal). On receipt of the DMA request the microprocessor
sends an acknowledge signal (HLDA) to the DMA controller. On receipt of this signal
(HLDA) the DMA controller sends a DMA acknowledge signal (DMACK) to the I/O
device. The DMA controller then takes over the control of the buses of microprocessor
and controls the data transfer between RAM and I/O device. When the data transfer is
complete, DMA controller returns the control over the buses to the microprocessor by
disabling the HOLD and DMACK signals.

 209

 210

7.3 THE 8085 INTERRUPTS
As already discussed, in Interrupt Driven I/O data transfer methods the

microprocessor gets interrupted by the I/O device when it is ready to transfer the data.
The microprocessor suspends its job after executing the current instruction. It saves the
contents of program counter to stack and jumps to the subroutine program. This
subroutine program is called Interrupt Service Subroutine (ISS) program. The ISS saves
the processor status into stack; and after executing the instruction for the data transfer, it
restores the processor status and then returns to main program. The ISS executes the
relevant set of instructions stored at a predetermined memory block. The Intel 8085
microprocessor has five hardware interrupt inputs on its chip. Besides these, the
microprocessor has eight interrupt instruction in the instruction set. The microprocessor
responds to both the hardware and software interrupts. In the following sections the
details of both software and hardware interrupts will be discussed.
7.4 SOFTWARE INTERRUPTS
 The 8085 microprocessor has eight software interrupts namely, RST 0, RST 1,
RST 2, RST 3, RST 4, RST 5, RST 6 and RST 7.
 The syntax for these interrupt instructions is given by:
 RST n
 where n varies from 0 to 7.
 These instructions are single byte instructions. When an interrupt occurs, a CALL
instruction to a predetermined location of the memory is executed. The effect of each
restart instruction is shown in table 7. 4.

 Table 7.4
Instruction Effect Op Code Binary equivalent Vector Location

RST 0 CALL 0000 H C7 1100 0111 0000 H
RST 1 CALL 0008 H CF 1100 1111 0008 H
RST 2 CALL 0010 H D7 1101 0111 0010 H
RST 3 CALL 0018 H DF 1101 1111 0018 H
RST 4 CALL 0020 H E7 1110 0111 0020 H
RST 5 CALL 0028 H EF 1110 1111 0028 H
RST 6 CALL 0030 H F7 1111 0111 0030 H
RST 7 CALL 0038 H FF 1111 1111 0038 H

These RST instructions are like vectors because they point to specific locations in

the memory. The starting address of each instruction is called a Vector Location. The
vector location for RST 0 is 0000 H and for RST 1 is 0008 H and so on. The vector
locations of each instruction are 8 bytes apart. Therefore 8 bytes of instructions can be
stored beginning at any vector location.

Figure 7.15 shows the hardware for the implementation of the software interrupt
instruction. This circuit is for the implementation of an instruction RST0. In response to

the interrupt request signal, the 8085 microprocessor sends the NTAI (interrupt
acknowledge) signal, which is used to enable the buffer. The hex code C7 H of RST 0
will be placed on the data bus.

 211

 Fig. 7.15

Figure 7.16 illustrates how software interrupt instructions are executed. Suppose
in the main program RST2 instruction is given, and when this instruction is executed the
contents of the program counter is pushed onto the stack. Then the program counter
jumps to the address 0010 H. The subroutine located from 0010 H to 0017 H is executed,
with the RET instruction as the last instruction of the subroutine program. So as the RET
instruction is executed it returns to the main program.

Similarly, if another restart instruction RST4 is encountered in the main program,
then the contents of the program counter are again pushed onto the stack. The program
jumps to the subroutine program whose starting address is given by 0020 H. After the
execution of this subroutine program it returns to the main program as shown in figure
7.16.

 212

Fig. 7.16
From the above discussion it is clear that the software interrupt instructions are

basically special kind of CALL instructions; when any of these instructions is executed it
branches to the predetermined address. Notice that all these instructions are of one byte
(ref. table 7.4) while the standard CALL instruction is of three bytes. The vector
addresses of these 8 software interrupts are 8 bytes apart. So 8 bytes of instructions can
be stored in the subroutine program associated with each of these instructions. But
generally, the subroutine programs may require more than 8 bytes. For this reason the
complete subroutine program are usually not stored in the vector locations, rather the
vector locations are used to specify the starting address of the longer subroutine program
i.e. in the vector location of these instructions JMP XXXX H may be stored. The XXXX
H represents the starting address of the longer subroutine program. The last instruction of
the program will be RET, so that after completing the subroutine program it jumps to the
main program as shown in figure 7.17.

 213

Fig. 7.17

 The hardware solution to multi-interrupt problem is carried out by the circuit
shown in figure 7.18. The multi-interrupt problem means the possibility of two requests
arriving simultaneously. This circuit will accept eight interrupt request and work as per
their priority and separate RST instruction for each request is generated. For the
generation of all eight RST instructions, a 3-to-8 priority encoder (IC 74LS148) along
with a tri-state octal buffer (IC 74LS244) is used as shown in figure 7.18.
 The 3-to-8 priority encoder generates a 3 bit binary code corresponding to active
input. If two or more inputs are active simultaneously, the highest numbered input will be
encoded. The three bits are inverted by the inverted buffer and then applied to an octal
buffer (IC 74LS244). The op code corresponding to the input will be generated which is

latched on to the data bus if INTA signal is active.
 The op codes for each RST instruction given in table 7.4 are reproduced below:

Instruction Op Code Binary equivalent
RST 0 C7 1100 0111
RST 1 CF 1100 1111
RST 2 D7 1101 0111
RST 3 DF 1101 1111
RST 4 E7 1110 0111
RST 5 EF 1110 1111
RST 6 F7 1111 0111
RST 7 FF 1111 1111

 It may be noted from this op code table that D0 to D2 and D6 to D7 bits of the op
codes are same for all the RST instructions (RST 0 to RST 7). The bits D3 to D5 are
different and are in the sequence of 3 bit binary numbers for the RST 0 to RST 7. In
general the code for RST instructions may be written as:
 11CCC111

 214

where CCC is
 000 for RST 0
 001 for RST 1
 010 for RST 2
 011 for RST 3
 100 for RST 4
 101 for RST 5
 110 for RST 6
 111 for RST 7
 This sequence permits to use the 3-to-8 priority encoder. It can be understood that

a signal say 3INT is low then A0 A1 A2 will be100 which will be inverted by the inverter
buffer as 011 (I3 I4 I5). Since the other lines I0, I1, I2, I6, I7 are all high, the octal buffer
will provide the op code DF H (op code for RST 3) on the 8085 data bus as soon as the

interrupt acknowledge signal (INTA) is made low in response to the interrupt request
signal. Similarly by activating other inputs of the priority encoder, the vector CALL
instructions can be generated on the 8085 data bus.

 Fig. 7.18

 215

7.5 HARDWARE INTERRUPTS
 In addition of software interrupts discussed above the 8085 has five hardware
interrupts also. For this, five hardware input pins are provided in the microprocessor. The
hardware interrupts are initiated by an external device, by placing an appropriate signal at
the interrupt pin of the microprocessor. The five interrupts RST 5.5, RST 6.5, RST 7.5,
TRAP and INTR are shown in table 7.5. Out of these interrupts RST 5.5, RST 6.5, RST
7.5 and TRAP are vector interrupts and INTR is the non-vectored interrupt. In vector
interrupts the microprocessor automatically sends the specific address to program counter
in response to an interrupt request signal. However, in non-vectored interrupt, the
interrupt device has to give the address of the interrupt service subroutine.

Table 7.5
Interrupt Priority Vector Location

TRAP 1 0024 H
RST 7.5 2 003C H
RST 6.5 3 0034 H
RST 5.5 4 002C H
INTR 5 -----

 It may be noted from the table that TRAP has the highest priority, RST 7.5 next
highest and so on. If two or more hardware interrupts are served at the same time then the
microprocessor executes them in order of their priority level; i.e. TRAP is served first,
then RST 7.5 and so on. When highest priority interrupt is executed, the lower priority
interrupts remain pending rather they are known as pending interrupts.
 The RST 7.5, RST 6.5 and RST 5.5 are the maskable interrupts and TRAP is non-
maskable interrupt. The maskable means the prevention of any interrupt. Some times it
may be required to prevent one or more interrupts when a certain task is being carried out
by the microprocessor; for this the masking of these interrupts is done. The masking of
any interrupt is carried out by an instruction known as SIM (Set Interrupt Mask). The
SIM is one byte instruction. To find the status of the interrupts i.e. to know which
interrupt is masked or which interrupt is pending, another instruction known as RIM
(Read Interrupt Mask) is used. These two instructions RIM and SIM will be discussed in
section 7.7.
7.6 INTERRUPT CONTROL CIRCUIT
 Figure 7.19 shows the interrupt control circuit with 8085 microprocessor. The
TRAP is non-maskable interrupt i.e. it is neither be affected by any flag nor can be
masked. It is used to handle very important functions. Since it is a highest priority
interrupt, so it is used to take care of parity errors, power failure and other events that
needs immediate attention. In the case of power failure, it may execute a routine to
transfer the contents of the main memory to the back up memory (if any); and also for
parity errors, the data may be corrected before carrying on. It is edge and level trigger
which means the input has to go high and stays high. The rising edge and level triggered
TRAP signal triggers the D flip-flop. The logic ‘1’ at the output of D flip-flop and logic
‘1’ of the TRAP input enable the AND gate to trigger the TRAP interrupt i.e. it calls the
vector location 0024 H as shown in figure 7.19. Once the TRAP is recognized, further
inputs at the TRAP will not be considered unless the interrupt is reset. The TRAP

interrupt will be reset if the RESET signal is active (low) or internal TRAP

 216

Acknowledge signal is high. After the 8085 microprocessor recognizes a TRAP interrupt,
it will send a high TRAP acknowledge signal which will reset the D flip-flop.
 RST 7.5 is a maskable interrupt which can be enabled or disabled by using SIM
instruction. This is an edge triggered interrupt. When a leading edge signal appears at the
RST 7.5 pin of 8085 microprocessor, D flip-flop 2 will be set (ref. figure 7.19). The
output of this flip-flop is labeled as I 7.5 which is known as pending interrupt. This is one
input of AND gate 2. The AND gate 2 will not be enabled until other two inputs of the
gates are high. The RST flip-flop will be reset either by having a high R 7.5 bit or by
having a high RST Acknowledge signal. The interrupt Acknowledge signal resets it for
future RST 7.5 interrupt.
 RST 6.5 and RST 5.5 are also maskable interrupts which may be enabled or
disabled using SIM instruction. Both are level triggered interrupts. When a high signal
(constant voltage of +5 V) appears at RST 6.5 pin of the microprocessor, it will enable
one pin of AND gate 3. Till RST 6.5 interrupt pin is high and other two pins of AND gate
3 are low, this interrupt is known as pending interrupt (I 6.5). Similarly, when a high
signal appears on RST 5.5 pin of the microprocessor, it will enable one terminal of AND
gate 4. This interrupt will be pending interrupt (I 5.5) till RST 5.5 pin is high and other
two inputs of AND gate 4 are low.
 It may be noted from the figure 7.19 that one input each of the AND gates 2, 3
and 4 is connected to IE signal (called interrupt enable flag). The second pin of these
gates will be enabled if IE signal is high. The IE signal may be made to high by enabling

 217

 218

the EI (Enable Interrupt) signal, which may be enabled by a software instruction EI . This
instruction will be discussed in the succeeding section.
 The mask bits M 7.5, M 6.5 and M 5.5 for the interrupts may be set using the SIM
instruction. To mask an interrupt, the corresponding mask bit has to be set. So to enable
a pending interrupt, the corresponding mask bit should be made low (by SIM instruction)
and interrupt enable flag should made high (by EI instruction).
 All the maskable interrupts may be disabled by either sending a low signal to

RESETIN terminal or a high signal to ‘Any Interrupt Acknowledge’ terminal. The DI
signal may also disable all the maskable interrupts. The DI (Disable Interrupts) is a
software instruction.
 All these hardware interrupts discussed above, once enabled will execute the
corresponding hardware CALL instruction specified by their vector locations, as per their
priority levels.
 INTR is a lowest priority, maskable and level triggered interrupt. It uses
handshaking. A high signal to INTR pin of the microprocessor will cause the current
instruction to complete and will put the contents of the program counter into stack. The

microprocessor will then generate a low INTA (interrupt acknowledge) signal. This
signal is then used to enable a tristate buffer for the execution of hardware CALL
instruction. It will execute the service subroutine program corresponding to any of the 8
software interrupts (RST 0 through RST 7).
7.7 INTERRUPT INSTRUCTIONS

Once the microprocessor recognizes any of the interrupts, it immediately disables all
the interrupts except TRAP. This is done just to ensure that no further interrupts are
recognized while the interrupt service subroutine (ISS) is being executed. Once the ISS is
complete the program is required to enable the interrupts again. For this one byte
instruction EI is introduced just before the RET instruction of ISS.

 Fig. 7.20

 219

Some portion of the main program may, sometimes be executed without being
enabled the interrupt signals. For this the interrupts are to be disabled. The interrupts may
be disabled by one byte instruction DI (Disable Interrupts). Later the interrupts may be
enabled as shown in figure 7.20.

EI and DI Instructions
 The instruction
 EI
stands for Enable Interrupt. When this instruction is executed, it produces a high EI signal
(fig. 7.19), which sets the flip-flop 3 and produces a high signal to interrupt enable flag
(IE). This way EI instruction enables all the interrupts except TRAP.
 The instruction
 DI
stands for Disable Interrupts. When this instruction is executed, it produces a high DI bit
of flip-flop 3 (fig. 7.19). This resets the flip-flop and results a low IE (interrupt enable
flag) signal. The low IE signal disables all the interrupts except TRAP.

SIM and RIM Instructions
 It is often required to selectively enable a few interrupts and disable others. The
selectively enabling or disabling the interrupts can be done by an instruction
 SIM
 It stands for set interrupt masks. This instruction is used by loading the
accumulator as shown in figure 7.21. The accumulator is loaded by MVI A, data (data bits
are as per the requirements) instruction. The SIM instruction is then executed.

Fig. 7.21
 The meaning of the different mask bits are given below:

 220

 The bits D0 to D2 are the mask bits (M 5.5 to M 7.5). A high to either of these bits
represents that the particular interrupt is masked and a low, however, to either of these
bits represents the enabling of that particular interrupt.
 The bit D3 is known as MSE (Mask Set Enable). When this bit is low, the mask
bits D0 to D2 are ignored. A high to this bit indicates that the bits D0 to D2 are valid as
described above.
 The bit D4 when high resets the flip-flop 2 (figure 7.19), in order to override RST
7.5 without servicing it.
 D5 is undefined bit.
 The bits D6 to D7 are used for the serial transfer of data through the SOD line. The
working of these pins will be described later.
 Let us take an example to illustrate the function of SIM instruction. For example
we have
 MVI A, 0C H
 SIM
instructions in an assembly language program for 8085 microprocessor. When first
instruction MVI A, 0C H is executed it will have the data (as shown in figure 7.22) for

Fig.7.22

the execution of SIM. The SIM instruction after its execution will enable MSE signal (as
D3 bit is high). RST 7.5 interrupt is masked (bit D2 is 1) and RST 5.5 and RST 6.5
interrupts are unmasked (enabled) as bits D0 and D1 are both 0. It will prevent the RST
7.5 interrupt from arriving at the final output.
 The another interrupt instruction is
 RIM
 It stands for Read Interrupt Mask. This instruction will give the present status of
the interrupt. This instruction loads the accumulator with 8 bit data whose details are
given in figure 7.23.

The meanings of the different bits for RIM are given below:
 The bits D0 to D2 represent the masking of RST 5.5, RST 6.5 and RST 7.5
interrupts. A high to either of these bits represents that the particular interrupt is enabled;
and a low to either of these bits represents that the particular interrupt is disabled.
 The bit D3 is known as interrupt enable flag (IE). When this bit is low, all the
interrupts except TRAP are disabled and a high to this bit mask the bits D0 to D2 are
ignored. A high to this bit indicates that the bits D0 to D2 are valid as described above.
 The bits D4 to D6 represent the pending interrupts. A high to either of these bits
represents that particular interrupt is pending; and a low to either of these bits represents
that particular interrupt is not pending.
 The bit D7 is a serial input data and used for the serial input data through SID line.
The working of this bit will be discussed later.

 221

Fig. 7.23
Let us take an example to illustrate the function of RIM instruction. Suppose after

the execution of RIM instruction, the accumulator contains 2A H as the data as shown in
figure 7.24. The high to I 6.5, IE and M 6.5 bits indicate that RST 6.5 is a pending
interrupt, the interrupt system is enabled and the RST 6.5 is currently masked.

Fig. 7.24

Example 7.1. Write an assembly language program for 8085 microprocessor to enable
RST 5.5 interrupt and disable RST 6.5 and RST 7.5 interrupts.
Solution. To enable RST 5.5, the bit D0 (M 5.5) for the accumulator should be 0
(unmask); and for disabling RST 6.5 and RST 7.5, the bits D1 and D2 (M 6.5 and M 7.5)
should be masked (1). Also MSE should be 1 (enable). The program will, therefore, be as
given below:
D7 D6 D5 D4 D3 D2 D1 D0
SOD SOE XX R 7.5 MSE M 7.5 M 6.5 M 5.5
0 0 0 0 1 1 1 0

 =0E H
 EI
 MVI A, 0E H
 SIM
Example 7.2. Write an assembly language program for 8085 microprocessor to enable
all the interrupts.
Solution. The program for this case will be as given below. The bits D0 to D2 should be
unmask and MSE should be enabled.

 222

D7 D6 D5 D4 D3 D2 D1 D0
SOD SOE XX R 7.5 MSE M 7.5 M 6.5 M 5.5
0 0 0 0 1 0 0 0

 =08 H
 EI
 MVI A, 08 H
 SIM
Example 7.3. Write an assembly language program for 8085 microprocessor to enable
RST 5.5 and RST 6.5 interrupt and reset 7.5 interrupt.
Solution. The program for this case will be as given below. The bits D0 and D1should be
unmasked and MSE should be enabled. For resetting of RST 7.5, the bit D4 (R 7.5)
should also be 1.
D7 D6 D5 D4 D3 D2 D1 D0
SOD SOE XX R 7.5 MSE M 7.5 M 6.5 M 5.5
0 0 0 1 1 1 0 0

 =1C H
 EI
 MVI A, 1C H
 SIM
Example 7.4. Write an assembly language program for 8085 microprocessor to check
if RST 5.5 is pending. If it is pending, enable it without affecting any other interrupt else
return to main program..
Solution. The program for this problem is given below. The RIM instruction will check if
RST 5.5 is a pending interrupt. For this bit pattern of the accumulator will be checked. If
bit D4 is 1, the RST 5.5 is pending interrupt otherwise not.
For RIM
D7 D6 D5 D4 D3 D2 D1 D0
SID I 7.5 I 6.5 I 5.5 IE M 7.5 M 6.5 M 5.5
For SIM
D7 D6 D5 D4 D3 D2 D1 D0
SOD SOE XX R 7.5 MSE M 7.5 M 6.5 M 5.5
 Label Mnemonics Operand Comments
 RIM ; Read Interrupt mask
 MOV B, A ; Mask information is moved to B-

reg.
 ANI 10 H ; Check if RST 5.5 is pending.
 JNZ NXT ; Jump to NXT if it is pending

interrupt.
 EI ; Enable interrupts.
 RET ; RST 5.5 is not pending return to

main program.
 NXT MOV A, B ; Get bit pattern (RST 5.5 is

pending).
 ANI 0E H ; Enable RST 5.5 by not masking D0

bit (For SIM).
 ORI 08 H ; Enable MSE for SIM.

 223

 SIM
 JMP ISS ; Jump to service subroutine for RS

T5.5.

7.8 SERIAL INPUT AND OUTPUT DATA TRANSFER
 As already discussed in the architecture of 8085, two pins (Pin Nos. 4 and 5) are
provided for SOD (Serial Out Data) and SID (Serial In Data) lines. These lines are used
for serial data transfer. The data transfer to or from the SID or SOD lines is possible
using the Instructions RIM (Read Interrupt Mask) and SIM (Set Interrupt Mask).

 Fig. 7.25

The data on the SID line (Pin 5 of 8085) is loaded into accumulator at bit D7
whenever a RIM instruction is executed. In other words a RIM instruction may be
executed each time a new bit arrives at the SID input. For example, let a bit ‘1’ arrives at
the SID input. RIM instruction is now executed. After the execution of RIM instruction
D7 bit of the accumulator will be 1 as shown in figure 7.25.

Further to input 8 bit data serially through SID line, RIM instruction is executed 8
times and each time D7 bit may be isolated and saved for the conversion of serial data
into parallel data.

The SIM instruction sends the D7 bit of the accumulator to the SOD line of 8085.
For this transfer, D6 bit (SOE) of the accumulator must be high as shown in figure 7.26.

 Fig. 7.26
Suppose we wish to send a ‘0’ bit to the SOD line, this can be done as:
 MVI A, 40 H
 SIM
Similarly, to send a ‘1’ bit to the SOD line, we use

 224

 MVI A, C0 H
 SIM
The rotate or other instructions may used to convert 8 bit parallel data to serial

data stream at the SOD output.
It may be noted from the above discussion that bit D7 is used for SID line and this

bit has nothing to do with the interrupt system. Similarly, bits D6 and D7 are used for
SOD line and these bits have nothing to do with the interrupt system. So no new
instructions are to be used for the serial transfer of data, i.e. interrupt instructions RIM
and SIM may be used for this purpose also.

Example 7.5. Consider a switch is connected to SID line and an LED to SOD line of
8085. It is required to input the SID line via switch and output the switch status to the
LED. In other words when the switch is ON or OFF the LED should glow or not glow.
Write an assembly language program to accomplish this.
Solution. Program to accomplish the required work of the problem is given as:

 Label Mnemonics Operand Comments
 START RIM ; Read Interrupt mask, Bit D7 of A is

SID.
 ORI 40 H ; Enable SOE for SIM.
 SIM ; Output to LED.
 JMP START ; Jump to START.
Example 7.6. Write an assembly language program to generate a symmetrical square
wave of known frequency at the SOD line of 8085 microprocessor.
Solution. To generate a square wave of certain frequency, SOD line should remain high
for certain time and then low for the same amount of time. This is done by using the
program given below. The time for the delay should be as per the frequency of the wave
to be generated.
MAIN PROGRAM:
 Label Mnemonics Operand Comments
 START MVI A, C0 H ; Enable SOE and SOD (D6 and D7)

and disables all interrupts for SIM.
 SIM ; Sends high signal to SOD line.
 CALL DELAY ; Delay is introduced for SOD to

remains high for certain time.
 MVI A, 40 H ; SOD is made low; and SOE and all

interrupts are disabled for SIM.
 SIM ; Sends low signal to SOD line.
 CALL DELAY ; Again delay is introduced for SOD

to remain low for certain time.
 JUMP START ; Repeats the process.
SUBROUTINE PROGRAM:
 Label Mnemonics Operand Comments
 DELAY LXI D, XXX H ; Loads DE register pair with a 16-

bit number.
 LOOP DCX D ; Decrements DE register pair by 1.

 225

 MOV A, E ; Moves the contents of E register to
accumulator.

 ORA D ; ORing of the contents of D and E
registers are performed to set the
zero flag.

 JNZ LOOP ; If result is not zero than jump to
loop.

 RET ; Go back to main program.
 The 16-bit number XXX H loaded to DE register pair is as per the delay introduced
in the program (discussed in chapter 4).
Example 7.7. Write an assembly language program to input an 8 bit data serially
through SID line of 8085 microprocessor. Convert it to 8 bit parallel data and store this
data to 2500 H memory location.
Solution. The program is given as:

 Label Mnemonics Operand Comments
 MVI B, 00 H ; Clears Register B.
 MVI C, 08 H ; Preset counter to 8.
 LOOP RIM ; Get the bit through SID line.
 ANI 80 H ; Isolate the bit received through

SID line.
 ORA B ; Convert to parallel word.
 RRC ; Rotate right.
 MOV B, A ; Save the accumulator contents to B

register.
 DCR C ; Decrement the contents of C

register.
 JNZ LOOP ; Go to LOOP if not zero.
 RLC ; Rotate left.
 STA 2500 H ; Store the parallel data to 2500 H

memory location.
 HLT

Example 7.8. An 8 bit data (say 32 H) is to be outputted serially through SOD line of
8085. An LED connected to SOD line, should glow or not glow each time a bit (1 or 0) is
outputted through SOD line. A delay of 1 sec is to be introduced between each transfer of
a bit. Write an assembly language program to implement this.
Solution. The program to output 8 bit data serially through SOD line is given below,
which is self explanatory.
MAIN PROGRAM
 Label Mnemonics Operand Comments
 MVI A, 00 H ; Loads the data 32 H to

accumulator.
 MVI C, 08 H ; Preset counter to 8.
 LOOP RRC ; Rotate LSB to MSB.

 226

 MOV B, A ; Save the accumulator contents to B
register.

 ANI 80 H ; Isolate SOD bit.
 ORI 40 H ; Enable SOE bit for SIM.
 SIM ; Sends the bit through SOD line.
 MOV A, B ; Save the present contents to

accumulator.
 CALL DELAY ; Call the delay for 1 sec.
 DCR C ; Decrement the contents of C

register.
 JNZ LOOP ; Go to LOOP if not zero.
 HLT
The delay subroutine program for 1 sec delay may be written as discussed in chapter 4.
SUBROUTINE PROGRAM:
 Label Mnemonics Operand Comments
 DELAY LXI D, F424 H ; Loads DE register pair with a 16-

bit number F424 H.
 LOOP DCX D ; Decrements DE register pair by 1.
 MOV A, E ; Moves the contents of E register to

accumulator.
 ORA D ; ORing of the contents of D and E

registers are performed to set the
zero flag.

 JNZ LOOP ; If result is not zero than jump to
loop.

 RET ; Go back to main program.

Example 7.9. Write an assembly language program that is interrupted by applying a
rising pulse at RST7.5 terminal manually. The program copies 256 bytes of data stored at
memory locations starting at 3000 H to memory locations starting at 4000 H. The
interrupt signal should, however, be able to introduce a delay of 1 sec. After the delay it
should then move to main program. The main program for transferring the data is in a
loop that repeats the same task again and again.
Solution. Here is the program that implements the given task.

MAIN PROGRAM
 Label Mnemonics Operand Comments
 EI ; Enable interrupts
 MVI A, 08 H ; Enable RST7.5, RST6.5 and

RST5.5.
 SIM
 LOOP LXI H, 3000 H ; Load the H-L pair with the starting

source address.
 LXI D, 4000 H ; Load the D-E pair with the starting

address of destination address.

 227

 MVI B, FF H ; load the B-reg. with the bytes of
data.

 NXT MOV A, M ; Load the accumulator with the
contents stored in memory location
addressed by H-L register pair.

 STAX D ; Store the accumulator contents to
the destination address given by D-
E register pair.

 INX H ; Increments the H-L pair for next
number.

 INX D ; Increments the D-E pair
 DCR B ; Decrement B.
 JNZ NXT ; If not zero jump to NXT.
 JMP LOOP ; Jump to start.
 HLT
 When the interrupt signal is enabled, it calls its vector location 003C H.
 At the vector location say it is stored that JMP FFBD H i.e. monitor transfers the
program to the memory location FFBD H. Now the user has to transfer from FFBD H to
a memory location from where service subroutine for RST7.5 is written. The user
transfers the program from FFBD H to 2000 H with the instructions JMP 2000 H. The
location 2000 H indicates the starting address of interrupt service subroutine. The
interrupt service subroutine is given as:

Interrupt Service Subroutine (at the starting address 2000 H)
 Label Mnemonics Operand Comments
 PUSH PSW : Save accumulator and flag contents

in stack.
 PUSH B ; Save the contents of B-C register

pair in stack.
 PUSH D ; Save the contents of D-E register

pair in stack.
 DELAY LXI D, F424 H ; Loads DE register pair with a 16-

bit number F424 H.
 LOOP DCX D ; Decrements DE register pair by 1.
 MOV A, E ; Moves the contents of E register to

accumulator.
 ORA D ; ORing of the contents of D and E

registers are performed to set the
zero flag.

 JNZ LOOP ; If result is not zero than jump to
loop.

 POP D ; Restore the contents of D-E
register pair from the stack.

 POP B ; Restore the contents of B-C register
pair from the stack.

 228

 POP PSW ; Restore the contents of
Accumulator and flag contents
form the stack.

 EI ; Enable interrupts
 RET ; Go back to main program.
 Program written in ISS is the program for delay of one second as already discussed.

PROBLEMS
1. Discuss the memory Mapped I/O operation for the transfer of data from

microprocessor to I/O devices and vice-versa.
2. Discuss the I/O Mapped I/O operation for the data transfer from microprocessor

to I/O devices and vice-versa.
3. Give the comparison of memory mapped I/O and isolated I/O scheme fro the data

transfer from microprocessor to I/O devices and vice-versa.
4. Why the problems arise when the data is transferred from the microprocessor to

I/O devices and vice-versa? Mention various data transfer scheme.
5. Discuss programmed I/O data transfer scheme.
6. Describe Interrupt driven I/O data transfer scheme.
7. What do you mean by handshaking? How is it used in asynchronous data transfer

between microprocessor and I/O devices?
8. What is DMA? Using block diagram explain how the data is transferred by a

DMA controller.
9. Discuss DMA for 8085.
10. What is an interrupt? How data is transferred between the microprocessor and I/O

devices.
11. What is the difference between software and hardware interrupts? Discuss

software interrupts of 8085.
12. How is the INTR interrupt used in 8085?
13. Differentiate between
 (i) Memory mapped I/O and I/O mapped I/O data transfer schemes.
 (ii) Maskable and Non-maskable Interrupts

(iii) Hardware and Software interrupts
14. Explain briefly the following:
 (i) DMA data transfer scheme
 (ii) Interrupt driven data transfer scheme
15. What are interrupt terminals available in 8085 microprocessor? How SIM and

RIM instructions are used to set and read the interrupts.
16. What are hardware interrupts? What is meant by Vectored interrupts?
17. What are the functions of SID and SOD pins of 8085? How RIM and SIM

instructions are used to input a bit through SID line and output a bit through SOD
line.

18. Explain RIM and SIM instructions.
19. Discuss EI and DI instructions.
20. Write down the procedure to mask the RST6.5 interrupt.
21. Explain RST n interrupt circuit of 8085.
22. Discuss the bit pattern for RIM instruction.

 229

23. Discuss the bit pattern for SIM instruction.
24. Draw and explain the interrupt control circuit for 8085 microprocessor.
25. Mention interrupt instructions of 8085. Discuss any two of them.
26. How will you enable all the interrupts of 805?
27. How will you enable RST5.5 and disable RST6.5 and RST7.5?
28. Write an assembly program of 8085 to generate asymmetrical square wave at the

SOD line of 8085.
29. Write an assembly language program to input 256 bytes of data serially through

SID line of 8085 microprocessor. Convert the 256 bytes of data received serially
to parallel data and store the data to memory locations starting at 2500 H.

30. Here are some instructions
 MVI A, 1D H
 SIM
 After SIM instruction is executed, which interrupts are masked.

(Ans.: RST 5.5 and RST 7.5 are masked.)
31. Here are some instructions
 MVI A, XX H
 SIM
 What should be the value of XX H in MVI instruction so that RST 5.5 and RST

6.5 are masked and all other don’t care bits should be set to zero.
(Ans.: XX H = 0B H)

8
Programmable Peripheral

Interface (PPI) 8255A

 The various methods of data transfer from the microprocessor to output devices or
vice-versa has already been discussed in the preceding chapter. Special interface circuits,
known as peripheral interface circuits are to be used for this purpose. The interfacing
devices may be classified into two categories namely general purpose peripherals and
special purpose peripherals. Basically the I/O devices to be connected to microprocessors
are known as peripherals, these are printers, floppy drives, CRT and Cassette recorder
etc. The general purpose peripherals are:

• Programmable Peripheral Interface (PPI)
• Programmable Interval Timer
• Programmable Interrupt Controller
• Programmable DMA Controller
• Programmable Communications Interface.

The special purpose peripherals used for interfacing a microprocessor to a specific
type of I/O device are:

• Programmable Keyboard and Display Interface
• Programmable Hard Disk Controller
• Programmable Floppy Disk Controller

The present chapter will confine to the discussion of Programmable Peripheral
Interface (PPI) IC 8255 A and its application.

8.1 DETAILS OF PPI IC 8255A
 The input/output devices are generally interfaced to the microprocessor through
the input/output port as shown in figure 8.1. The input/output port is either non-
programmable or programmable. A non-programmable port can either be connected in
input mode or output mode, i.e. if both input and output devices are to be connected to
the microprocessor two separate non-programmable ports are to be used, one for input
device and other for the output device. INTEL 8212 is an 8-bit non-programmable I/O
port. Figures 8.2 (a) and (b) show the interfacing of 8212 in input and output mode
respectively. However, a programmable I/O port can be programmed to act either as an
input port or an output port. The INTEL 8255A is a programmable port device. It is most

 231

versatile Programmable Peripheral Interface which may be connected to almost any

 Fig. 8.1

(a) (b)

Fig. 8.2
microprocessor. This IC is widely used and can be programmed to transfer the data to the
input/output devices. It is a 40 pin dual in line IC package, whose pin configuration and
block diagram are shown in figures 8.3 and 8.4 respectively.

 232

Fig. 8.3

 The IC 8255 A has three 8-bit ports:
 Port-A
 Port-B
 and Port-C
 The port-C can be used into two 4-bit ports represented as Port CUpper and Port
CLower.
 Port-A (PA7-PA0) and Port-CUpper (PC7-PC4) together form Group A, whereas
Port-B (PB7-PB0) and Port-CLower (PC3-PC0) form Group B as shown in figure 8.5.
 After deciding the configuration of 3 ports (which port is to be used as input port
and which port is to be used as output port), a control word of the command has to be
given to the microprocessor. An 8-bit control word is formed for this purpose which may
be transferred to the control word register of 8255 through the accumulator.

 The control register has 6 control lines RD, WR, RESET, A1, A0 and CS whose
functions are as given below:

 233

Fig. 8.4

(1) RD (Read): It is a read signal which is active low. When this signal goes low,
it allows the microprocessor to read the data from the selected
I/O ports of the 8255 PPI.

(2) WR (Write): It is the write signal which is also active low. When this signal
goes low, the microprocessor writes (loads) the data into the
selected I/O ports or the control register of 8255.

(3) RESET (Reset): This is a reset line which is active high. When a high signal
appears on this line, it clears the control register and sets all the
ports in the input mode.

 234

 Fig. 8.5
 (4) A0 and A1: These lines A0 and A1 are used to address the three ports and the

control word as shown in table 8.1. If the CS (chip select)
terminal of 8255 is low, the lines A0 and A1 decide the ports. The

CPU can read or write into these registers by using RD and WR
signals.

 Table 8.1

(5)CS (Chip Select): It is an active low chip select terminal. It is used to select 8255

by applying low signal to CS terminal. When a high signal
appears on this line, the 8255 will not be selected, the data bus
buffer that connects 8255 to the system data bus remains floated.

 The 6 bits AD2-AD7 of address data bus (low order address bus) of the

microprocessor are decoded to provide CS; the remaining two bits AD0-AD1 may be
used for the selection of control register or any of the three ports as shown in figure 8.6.

Since the six bits of address data bus are decoded for CS, so as many as)64(26 = PPI
(8255) can be connected to any system. For the selection of any port of 8255 AD1 and
AD0 bits of the address data bus are connected to A1 and A0 terminals of 8255.

 A1 A0
0 0
0 1
1 0
1 1

Port-A
Port-B
Port-C
Control word register

 235

Fig. 8.6

 Figure 8.7 shows the chip-select logic for 8255. From this logic diagram it is clear

that if AD7-AD2 are all 0s then it enables CS to select this chip. The port selection will
depend on the bits AD1-AD0 as given in table 8.2.

 Fig. 8.7

Table 8.2

CS
AD7 AD6 AD5 AD4 AD3 AD2

AD1 AD0

HEX
ADDRESS

PORT NAME

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 0 0

 0 1

 1 0

 1 1

00 H

01 H

02 H

03 H

Port-A

Port-B

Port-C

Control word
Register

 Generally the microprocessor kits available with the laboratories have two 8255
connected with the system; 8255-I and 8255-II. Figure 8.8 shows the chip select logic for

 236

the second 8255. If AD7-AD2 are chosen as per this diagram then the second 8255 (8255-
II) will be selected. The port selection will depend on the bits AD1-AD0 as given in table
8.3. The M/S Vinytics, New Delhi has adopted this logic in their microprocessor kits.

 Fig. 8.8

Table 8.3

CS
AD7 AD6 AD5 AD4 AD3 AD2

AD1 AD0

HEX
ADDRESS

PORT NAME
of 8255-II

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

 0 0

 0 1

 1 0

 1 1

08 H

09H

0A H

0B H

Port-A

Port-B

Port-C

Control word
Register

 It may be mentioned here that if the instruction OUT 03 H is executed then it
transfers the contents of accumulator to the control word register of 8255-I. Similarly, if
the instruction OUT OB H is executed then the accumulator contents will be transferred
to control word register of 8255-II. For the control word, accumulator is loaded with the
contents that are necessary to use the ports of 8255 as input port or output port. The
procedure for the generation of control word will be discussed in a later section of this
chapter. Now if 8255-I is initialized to use Port A as input port and ports B and C as
output ports, then the execution of IN 00 H instruction will transfer the data from port A

 237

of 8255-I to the accumulator. The execution of OUT 01 H instruction will transfer the
accumulator contents to the port B of 8255-I. Similarly, 8255-II may be initialized by
giving the proper control word to the control word register by using the instruction
OUT 0B H. The IN or OUT instruction having the port address as 08, 09 or 0A may be
used for the data transfer through 8255-II.
8.2 OPERATIONAL MODES OF 8255A
 The operational modes of 8255 A PPI can be classified into two broad groups
(fig. 8.9).

 Fig. 8.9
1. I/O Mode
 The input/output mode can further be subdivided into three groups:

• Mode 0 – Simple Input/output mode
In this mode the 8 bit port A (PA0-PA7) can be configured as input
or output port. The port B (PB0-PB7) can also be configured, in the
similar fashion, as input or output operation. However there is
flexibility for the port C. It can be divided into two 4 bit ports, the
port CLower (PC0-PC3) and port CUpper (PC4-PC7). Each of them can
be set independently for input or output operation. In this way
there are four ports (port-A, port-B, CLower and port CUpper) and
each of them can be set either as an input port or an output port.
Here these ports are simple input or output ports i.e. these ports can
work without handshaking. In this mode the outputs are latched
whereas the inputs are not latched. The basic definition of this
mode is shown in figure 8.10.

• Mode 1 – Strobed Input/output or Handshake mode
In this mode of operation handshaking is used for the input or
output data transfer. As discussed earlier, there are two groups in
8255 PPI: Group A and Group B. Both these groups have one 8-bit
port and one 4-bit port. Port-A and Port CUpper form group A
whereas Port-B and Port CLower form group B. The 8-bit port of
each group can be programmed for input or output operation with
latched input and latched output facilities. The bits of Port C are
used for handshaking. Figure 8.11 shows the basic definition of
this mode.

 238

Fig. 8.10

Fig. 8.11

 239

• Mode 2 – Bidirectional Mode
In this mode Port A can be programmed to operate as a
bidirectional port. When Port A is programmed in this mode of
operation, Port B can be used either in Mode 0 or Mode 1. For
mode 2 operation PC3 to PC7 bits are used for handshaking. In this
mode too both inputs and outputs are latched. The basic definition
of this mode is shown in figure 8.12.

Fig. 8.12

2. Bit Set/Reset Mode
 The modes of operation of 8255 PPI may be selected by the software. The details
of these modes will be discussed in the following sections.
8.3 CONTROL WORD FORMAT FOR 8255A
 As discussed above, a port can be programmed to act as an input port or an output
port. A control word is, therefore, to be formed for programming the ports of 8255A.
The format for the control word is shown in figure 8.13. The control word, as per the
requirement of the programmer, is written into the control word register of 8255A. No
read operation of the control word is allowed. The description of the control bits is given
below:
 Bit D0 Sets Port CLower as input or output port.
 To make Port CLower as input port this bit is set to 1.
 To make Port CLower as output port this bit is set to 0.
 Bit D1 Sets Port B as input or output port.
 To make Port B as input port this bit is set to 1.
 To make Port B as output port this bit is set to 0.

 240

Fig. 8.13

 Bit D2 This bit is for mode selection for the port B.
 If this bit is set to 0, the port B will operate in mode 0.
 If this bit is set to 1, the port B will operate in mode 1.
 Bit D3 Sets Port CUpper as input or output port.
 To make Port CUpper as input port this bit is set to 1.
 To make Port CUpper as output port this bit is set to 0.
 Bit D4 Sets Port A as input or output port.
 To make Port A as input port this bit is set to 1.
 To make Port A as output port this bit is set to 0.
 Bits D5 These two bits are used to determine the I/O mode of port A.
 and D6 These bits are defined for the various modes of port A as follows:
 D6 D5 Mode of port A
 0 0 Mode 0
 0 1 Mode 1
 1 0 or 1 Mode 2
 Bit D7 This bit specifies either I/O function or bit set/reset function (BSR mode).

 241

 If this bit is set to 1 then the 8255 will work in I/O mode.
 If this bit is set to 0 then the 8255 will work in BSR mode.
 There are 16 combinations of control words for various configurations of the ports
of 8255 for Mode 0 operations. These control words are shown in table 8.4.

 Table 8.4

Control Word Bits Control
Word

PORT A PORT
CUpper

PORT B PORT
CLower D7 D6 D5 D4 D3 D2 D1 D0

1 0 0 0 0 0 0 0

80 H Output Output Output Output

1 0 0 0 0 0 0 1

81 H Output Output Output Input

1 0 0 0 0 0 1 0

82 H Output Output Input Output

1 0 0 0 0 0 1 1

83 H Output Output Input Input

1 0 0 0 1 0 0 0

88 H Output Input Output Output

1 0 0 0 1 0 0 1

89 H Output Input Output Input

1 0 0 0 1 0 1 0

8A H Output Input Input Output

1 0 0 0 1 0 1 1

8B H Output Input Input Input

1 0 0 1 0 0 0 0

90 H Input Output Output Output

1 0 0 1 0 0 0 1

91 H Input Output Output Input

1 0 0 1 0 0 1 0

92 H Input Output Input Output

1 0 0 1 0 0 1 1

93 H Input Output Input Input

1 0 0 1 1 0 0 0

98 H Input Input Output Output

1 0 0 1 1 0 0 1

99 H Input Input Output Input

1 0 0 1 1 0 1 0

9A H Input Input Input Output

1 0 0 1 1 0 1 1

9B H Input Input Input Input

8.4 PROGRAMMING IN MODE 0
 As discussed earlier, the Ports A, B, and C can be configured as simple input or
output ports by writing the appropriate control word in the control word register. In the
control word D7 is set to 1 as 8255A is to be used in simple I/O mode, D6, D5 and D2 are

 242

all set to 0 as all the ports are to be used in mode 0. The remaining bits D4, D3, D1 and D0
determine if the corresponding ports are to be used as input port or output port (1 for
input port and 0 for output port). Since these are four bits to decide which ports are to be
used as input ports and which ports are to be used as output ports, so for this purpose,
there will be 16 possible combinations of control words listed in table 8.4.
 For example, the control word when the ports of 8255A PPI are to be used in
mode 0 with Port A as input port, port B as output port, Port CUpper as output port and
Port CLower as input port is given as:

Fig. 8.14

 The control word 91 H is to be loaded to the control word register (CWR) of
8255A through the OUT instruction. Let the control word 91 H is to be loaded to control
word register of 8255-I connected to the system (port address is 03 H discussed earlier).
It may be done with the following instructions:
 MVI A, 91 H
 OUT 03 H
 Now with OUT or IN instructions, the data may be transferred to or from the
output devices. The proper port address is to be given with these instructions.
Example 8.1. Obtain the control word when the ports of 8255A are to be used in mode 0
with port-A as input port and port B and port C as output port.
Solution. The control word for this case is given as:

 Fig. 8.15
Example 8.2. Obtain the control word when the ports of 8255A are to be used in mode 0
with port-A as output port and port B as input port and port C as output port.
Solution. The control word for this case is given as:

 Fig. 8.16
Example 8.3. Make control word when the ports of 8255A are to be used in mode 0 with
all the ports as output ports.
Solution. The control word for this case is given as:

 243

 Fig. 8.17
Example 8.4. Write an assembly language program to generate a square ware of 1 KHz
frequency using 8255A. The wave should be available at PA0 terminal of Port-A.
Solution. The Program to perform the task given in the problem is shown below:

MAIN PROGRAM:
Label Mnemonics Operand Comments

MVI A, 80 H ; Initialize 8255-I to work all the
ports as output ports.

 OUT 03 H ; Write the control word (80 H) in
the control word register of 8255-I.

LOOP MVI A, 00 H ; Load 00 H to accumulator.
 OUT 00 H ; Send 00H (0V) to PA0.
 CALL DELAY ; Jump to dealy subroutine to

introduce a delay of 0.5 msec.
 MVI A, 01 H ; Load 01H to accumulator.
 OUT 00 H ; Send 01 H (5V) to PA0.
 CALL DELAY ; Jump to dealy subroutine to

introduce a delay of 0.5 msec.
 JMP LOOP ; Jump to loop to repeat the process.
SUBROUTINE PROGRAM:
 Label Mnemonics Operand Comments
 DELAY LXI D, 003FH ; Loads DE register pair with a 16-

bit number (6310).
 LOOP1 DCX D ; Decrements DE register pair by 1.
 MOV A, E ; Moves the contents of E register to

accumulator.
 ORA D ; ORing of the contents of D and E

registers are performed to set the
zero flag.

 JNZ LOOP1 ; If result is not zero than jump to
LOOP1.

 RET ; Go back to main program.
 The subroutine program introduces a delay of approximately 0.5 msec (discussed in
section 4.3). The PA0 terminal will be low for 0.5 msec and high for 0.5 msec. The total
time will be 1 msec and thus a signal of 1 KHz will be generated at PA0 of port-A. A
CRO may be connected to this terminal to observe the wave.
Example 8.5. Write an assembly language program to glow 8-LEDs sequentially with a
delay of one second. The LEDs are connected to 8 bits of port-B of 8255-II attached with
the system.
Solution. The program to perform the task of the problem is given below:

 244

MAIN PROGRAM:
Label Mnemonics Operand Comments

MVI A, 80 H ; Initialize 8255-II to work all the
ports as output ports.

 OUT 0B H ; Write the control word in the
control word register of 8255-II.

 MVI A, 01 H ; Load 01 H to accumulator.
REPEAT OUT 09 H ; Send 01H (5V) to PB0 for the glow

of LED
 CALL DELAY ; Jump to delay subroutine - to

introduce a delay of 1 sec.
 RLC ; Rotate the contents of accumulator

left for sequential glow of LEDs.
 JMP REPEAT ; Jump to Repeat for the next LED

to glow.
SUBROUTINE PROGRAM:
 Label Mnemonics Operand Comments
 DELAY PUSH PSW ; Send the contents of Acc and flag

register to stack.
 MVI C, 02 H ; Load C register with 02 H data.
 LOOP LXI D, F424 H ; Loads DE register pair with a 16-

bit number (6310).
 LOOP1 DCX D ; Decrements DE register pair by 1.
 MOV A, E ; Moves the contents of E register to

accumulator.
 ORA D ; ORing of the contents of D and E

registers are performed to set the
zero flag.

 JNZ LOOP1 ; If result is not zero than jump to
LOOP1.

 DCR C ; Decrement the contents of C
register.

 JNZ LOOP ; If the result is not zero Jump to
LOOP.

 POP PSW ; Acc and flag contents are popped
from the stack.

 RET ; Go back to main program.
The subroutine program given here is already discussed in section 4.3.
In place of RLC in the main program RRC may be written, which will allow the LEDs to
glow in the opposite sequence.
Example 8.6. Write a program in assembly language of 8085, to switch on an a.c. bulb
after a delay of 1 Min. A relay circuit may be connected to PA0 of 8255-I to switch on the
bulb.
Solution. The relay circuit may be connected to PA0 of 8255A as shown in figure 8.18.
When PA0 is made high (through software), the transistor T1 goes into saturation and
thus energizes the relay. The normally open (N/O) terminals of the relay get connected

 245

together and the bulb may be switched on. To provide high (logic 1) to PA0, the program
in assembly language of 8085 is written as:

Fig. 8.18

MAIN PROGRAM:
Label Mnemonics Operand Comments

MVI A, 80 H ; Initialize 8255-I to work all the
ports as output ports.

 OUT 03 H ; Write the control word in the
control word register of 8255-I.

 MVI A, 00 H ; Load 00 H to accumulator.
 OUT 00 H ; Send 00H (0V) to PA0 for the bulb

to remain OFF.
 CALL DELAY ; Jump to delay subroutine - to

introduce a delay of 1 Min.
 MVI A, 01 H ; Load 01 to accumulator.
 OUT 00 H ; Send 01 (5V) to PA0 for the bulb

to ON.
 HLT
SUBROUTINE PROGRAM:
 Label Mnemonics operand Comments
 DELAY MVI C, 78 H ; Load C register with 78 H

(12010)data so that the delay of
0.5sec is run 120 times (60sec).

 LOOP LXI D, F424 H ; Loads DE register pair with a 16-
bit number (6310).

 LOOP1 DCX D ; Decrements DE register pair by 1.
 MOV A, E ; Moves the contents of E register to

accumulator.
 ORA D ; ORing of the contents of D and E

registers are performed to set the
zero flag.

 JNZ LOOP1 ; If result is not zero than jump to
LOOP1.

 246

 DCR C ; Decrement the contents of C
register.

 JNZ LOOP ; If the result is not zero Jump to
LOOP.

 RET ; Go back to main program.
Example 8.7. Eight switches are connected to 8 bits of 8255 A (assume that the switches
are debouncer switches) and 8 LEDs are connected to the 8 bits of Port B of 8255 A.
Write an assembly language program that whenever any of the switch is depressed the
corresponding LED glows. For example, if the switch number 3 is switched on, the LED
connected to bit 3 should glow; similarly for the other.
Solution. The program to perform the task of the problem is given below:
MAIN PROGRAM:
Label Mnemonics Operand Comments

MVI A, 99 H ; Initialize 8255-I to make port A
and port C as input ports and port
B as output port.

 OUT 03 H ; Write the control word in the
control word register of 8255-I.

REPEAT IN 00 H ; Send 01H (5V) to PB0 for the glow
of LED

 OUT 01 H ; Output the input data to glow the
LED corresponding to depressed
switch.

 JMP REPEAT ; Jump to Repeat.

8.5 PROGRAMMING IN MODE 1 (STROBED INPUT/OUTPUT)

As already discussed, in Mode 1 handshake (Strobes) signals are used for the data
transfer between the microprocessor and I/O devices. The handshake signals are
exchanged between the microprocessor and peripherals. Both group A and group B of
8255 can be made to operate in Mode 1. The two ports (Port A and Port B) can be
configured either as input port or output port. Each port (Port A and Port B) uses three
lines of port C as handshake signals (i.e. total 6 lines of port C are used for handshake
signals). The remaining two lines of port C can be used for simple I/O operation.

Bits PC0, PC1 and PC2 of port C are used as handshake signals for port B in input
and output modes. Bits PC3, PC4 and PC5 of port C are used as handshake signals for
port-A in input mode only. The remaining bits of port C (PC5 and PC6) are used as simple
I/O operation as programmed by bit D3 of the control word.

Bits PC3, PC6 and PC7 of port C are used as control (handshake) signals for port A
in output mode. In this case bits PC4 and PC5 of port C are used as simple I/O operation
as programmed by bit D3 of the control word. The remaining bits PC0, PC1 and PC2 of
port C are used for handshake signals for port B.

The combination of Mode 1 and Mode 0 operation is also possible. For example,
when port A is programmed to operate in mode 1, the port B can be operated in mode 0.
8.5.1 Input Control Signals in Mode 1

Figure 8.19(a) shows the input configuration of both Port A and Port B to be used
in mode 1. The control signals used for handshaking are also shown in this figure. Bits

 247

PC3, PC4 and PC5 of port C are used for handshaking when port A is used as input port;
and bits PC0, PC1 and PC2 are used for handshaking when port B is also used for input
port. Bits PC6 and PC7 are used for simple input/output operation. The control word for
using Port A and Port B as input ports in mode 1 is shown in figure 8.19(b).

The functions of three control signals used for handshaking are given as:

STB (Strobe Input) This is an active low signal generated by the peripheral
device to indicate that it has transmitted a byte of data. In
response to this signal, 8255 generates IBF (Input Buffer
Full) and INTR (Interrupt Request) signals.

IBF (Input Buffer Full) This is an acknowledge signal sent by 8255. A high to this
signal indicates that the input latch has received the data
byte.

INTR (Interrupt Request) This is an output signal sent by 8255 which may be used to
interrupt the microprocessor. This signal is generated when

STB, IBF and INTE (Interrupt Enable) are all low (logic

0). At the falling edge of the RD signal, this is reset.

 (a)

 (b)

 248

 (c)

 (d) Fig. 8.19
INTE (Interrupt Enable) This is an internal flip-flop which is used to enable or

disable the generation of INTR signal. The two flip-flops
INTEA and INTEB are set/reset using the BSR mode. The
bit PC4 enables or disables INTEA; and PC2 enables or
disables INTEB.

Figure 8.19(c) shows the status word (i.e. the status of the signals INTR, INTE
and IBF signals etc.) which will be placed in the accumulator if the port C is read.
 As shown in figure 8.19(d), the peripheral first loads data into the input port A or

B by making STB input low. This low STB signal is generated by the peripheral device
to indicate that it has transmitted a byte of data. The 8255A generates IBF and INTR in

response to the active low STB signal.
8.5.2 Output Control Signals in Mode 1

As already discussed Bits PC3, PC6 and PC7 of port C are used as control
(handshake) signals for port A in output mode. In this case bits PC4 and PC5 of port C are
used as simple I/O operation as programmed by bit D3 of the control word. The
remaining bits PC0, PC1 and PC2 of port C are used for handshake signals for port B.

Figure 8.20(a) shows the input configuration of both Port A and Port B to be used
in mode 1. The control signals used for handshaking are also shown in this figure. Bits
PC3, PC6 and PC7 of port C are used for handshaking when port A is used as output port;
and bits PC0, PC1 and PC2 are used for handshaking when port B is also used for output
port. Bits PC4 and PC5 are used for simple input/output operation. The control word for
using Port A and Port B as input ports in mode 1 is shown in figure 8.20(b).

The functions of three control signals used for handshaking are given as:

OBF (Output Buffer Full) This is an active low signal; it activates when the
microprocessor writes data into output latch of 8255. This

 249

indicates to an output peripheral that a new data is ready to

be read. It goes high again after the 8255 receives a ACK
signal from peripheral.

ACK (Acknowledge) This is an input signal from a peripheral. It becomes active
(low) when peripheral receives the data from 8255 ports.

 INTR (Interrupt Request) This is an output signal which is set at the rising edge of the

ACK signal. This signal can be used to interrupt the
microprocessor. It requests for the next data byte for

output. This signal is generated when OBF, ACK and
INTE (Interrupt Enable) are all high (logic 1). At the falling

edge of the WR signal this is reset.
INTE (Interrupt Enable) This is an internal flip-flop to a port and required to be set

to generate the INTR signal. The two flip-flops INTEA and
INTEB are set/reset using the BSR mode.

Figure 8.20(c) shows the status word (i.e. the status of the signals INTR, INTE
and OBF signals etc.) which will be placed in the accumulator if the port C is read.

 Figure 8.20(d) shows the timing diagram for strobed Output.

(a)

(b)

 250

(c)

 (d) Fig. 8.20
Example 8.8. Obtain the control word for the following configuration of the ports of
8255 A for mode 1 operation:
 Port A – as input port,
 Mode for Port A – mode 1
 Port B – input port
 Mode for Port B – mode 1,
 The remaining pins of port CUpper are to be used output pins.
Solution. The 8255 A is to be used in mode 1, and port A as input port so PC3, PC4 and
PC5 pins of port C will be used as the handshake signals. For port B as input port the PC0,
PC1 and PC2 pins of port C will be used as the handshake signals. The remaining pins of
port CUpper will be used as simple input output mode. In the present example PC6 and PC7
are to be used as output pins. The control word for the same may be given as (fig. 8.21):

 Fig. 8.21

 251

Example 8.9. Obtain the control word for the following configuration of the ports of
8255 A for mode 1 operation:
 Port A – as output port,
 Mode for Port A – mode 1
 Port B – output port,
 Mode for Port B – mode 1,
 The remaining pins PC4 and PC5 of port C are to be used input pins.
Solution. The 8255 A is to used in mode 1, and port A as output port so PC3, PC6 and
PC7 pins of port C will be used as the handshake signals. For port B as output port the
PC0, PC1 and PC2 pins of port C will be used as the handshake signals. The remaining
pins of port C will be used as simple input output mode. In the present example PC4 and
PC5 are to be used as input pins. The control word for the same may be given as (fig.
8.22):

 Fig. 8.22

Example 8.10. Obtain the control word for the following configuration of the ports of
8255 A:
 Port A – as input port,
 Mode for Port A – mode 1
 Port B – input port,
 Mode for Port B – mode 0,
 Port CLower – output port
 The remaining pins PC6 and PC7 of port C are to be used input pins.
Solution. The 8255 A is to used in mode 1 and mode 0, and port A as input port in mode
1 so PC3, PC6 and PC7 pins of port C will be used as the handshake signals. The port B is
to be used as input port in mode 0. The Port CLower is used as output port and remaining
bits of port C (PC6, PC1) as input pins. The control word for the same may be given as
(fig. 8.23):

Fig. 8.23

 252

8.6 PROGRAMMING IN MODE 2 (STROBED BIDRECTIONAL B US I/O)
 In mode 2 operation of 8255A, port A can be used as bidirectional 8 bit I/O bus.
The port B can operate in mode 0 or mode 1.
 When port A is programmed to operate in mode 2 (bidirectional I/O bus), the five
bits of port C (PC3-PC7) are used as control (handshake) signals for port A. This is
illustrated in figure 8.24. In this case port B can be programmed in mode 0 or mode 1. If
port B is used in mode 0, the remaining bits of port C (PC0-PC2) are used as input or
output. However, if port B is used in mode 1, PC0-PC2 bits are used as handshake signals
for port B.

Fig. 8.24

The functions of five control signals used for handshaking of port A are given as:

STB (Strobe Input) This is an active low signal generated by the peripheral
device to indicate that it has transmitted a byte of data. In
response to this signal, 8255 generates IBF (Input Buffer
Full) and INTR (Interrupt Request) signals.

IBF (Input Buffer Full) This is an acknowledge signal sent by 8255. A high to this
signal indicates that the input latch has received the data
byte.

INTR (Interrupt Request) This is an output signal which is set at the rising edge of the

ACK signal. This signal can be used to interrupt the
microprocessor. It requests for the next data byte for

output. This signal is generated when OBF, ACK and
INTE (Interrupt Enable) are all high (logic 1). At the falling

edge of the WR signal this is reset.
INTE (Interrupt Enable) This is an internal flip-flop to a flip-flop to a port and

required to be set to generate the INTR signal. The two
flip-flops INTE1 and INTE2 are set/reset using the BSR
mode.

 253

OBF (Output Buffer Full) This is an active low signal; it activates when the
microprocessor writes data into output latch of 8255. This
indicates to an output peripheral that a new data is ready to

be read. It goes high again after the 8255 receives a ACK
signal from peripheral.

If all the possible combinations are considered, then there will be four
configurations of the 8255A in mode 2. These combinations with their corresponding
control words are shown in figures 8.25 to 8.28. The status word in mode 2 is shown in
figure 8.29, which will be placed in the accumulator if the port C is read.

Fig. 8.25

Fig. 8.26

 254

Fig. 8.27

Fig. 8.28

Fig. 8.29

Example 8.11. Obtain the control word for the following configuration of the ports of
8255 A:

 255

 Port A – as bidirectional,
 Mode for Port A – mode 2
 Port B – input port,
 Mode for Port B – mode 0,
 Port CLower – input port
Solution. . It may be remembered that the 8255 A is used in mode 2 only for port A.
When port A is used to operate in mode 2; port B can be used either in mode 0 or mode 1.
The pins of port C (PC3 to PC7) are used for the control signals for port A. For port B to
operate in mode 0, Port CLower can be used as input or output pins as per the D0 bit of the
control word. On the other hand for the port B to operate in mode 1, PC0, PC1 and PC2
bits will be used for control signals.
 The control word for this case is given as (fig. 8.30):

Fig. 8.30

Example 8.12. Obtain the control word for the following configuration of the ports of
8255 A:
 Port A – as bidirectional,
 Mode for Port A – mode 2
 Port B – input port,
 Mode for Port B – mode 1,
Solution.
 The control word for this case is given as (fig. 8.31):

Fig. 8.31

8.7 BIT SET/RESET (BSR) MODE
 As discussed in the earlier sections of this chapter that 8255A PPI can be used in
bit set/reset (BSR) mode. To use the PPI in BSR mode D7 bit of the control word should
be set to zero. However, for other mode of operations this bit should be set to 1. In BSR
mode eight bits of Port C can be set or reset by writing the control word in the control
word register. If a control word with bit D7 as 0 is recognized as a BSR mode then it does
not alter any previously transmitted control word with D7 as 1; thus I/O operations are not
affected by a BSR control word. In this mode of operation individual bit of port C can be
set or reset or in other words a BSR control word affects only one bit of port C. The
control word format for this mode of operation is shown in figure 8.32.

 256

 Fig. 8.32
 The bits of the control word are defined as:

Bit D7 This bit should be zero, to use 8255A in bit set/reset mode.
Bits D4-D6 These bits are don’t care bits, which may be kept 0s or 1s but

generally kept 0.
Bits D1-D3 The bits D3, D2 and D1 are known as bit select pins. Table 8.5

shows which bit of port C will be affected by the D3, D2 and
D1 bits of bit select pins.

 Table 8.5
D3 D2 D1 Bit of

port C
 0 0 0
 0 0 1
 0 1 0
 0 1 1
 1 0 0
 1 0 1
 1 1 0
 1 1 1

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

Bit D0 This is known as Set reset bit. To set a bit of port C, D0 bit of

the control word should be 1; and to reset a bit of port C, D0
of the control word should be 0.

 For example to reset PC3 (bit 3 of port C), the control word
format will be given as:

 D7 D6 D5 D4 D3 D2 D1 D0
 0 0 0 0 0 1 1 0
 = 06 H
 Bit 3 (PC3)

 Similarly, to set PC3, the control word format is given as:
 D7 D6 D5 D4 D3 D2 D1 D0
 0 0 0 0 0 1 1 1
 = 07 H
 Bit 3 (PC3)

Example 8.13. A relay circuit, to switch on or off an a.c. mains bulb, is connected to
PC4 (4

th bit of port C). The 8255A is connected microprocessor whose address for control

 257

word is 03 H. Using BSR mode it is desired to switch on and off the bulb after a regular
interval of time. W rite a program in assembly language of 8085, to implement the above.
Solution. The relay circuit may be connected to PC4 of 8255A as shown in figure 8.33.
To switch on and off the bulb regularly using BSR, the program in assembly language of
8085 is written as:

Fig. 8.33

 The control word in BSR mode to reset PC4 bit is:
 D7 D6 D5 D4 D3 D2 D1 D0
 0 0 0 0 1 0 0 0 = 08 H

 The control word in BSR mode to set PC4 bit is:
 D7 D6 D5 D4 D3 D2 D1 D0
 0 0 0 0 1 0 0 1 = 09 H
MAIN PROGRAM:
Label Mnemonics Operand Comments
 LXI SP, XXXX H ; Initialize stack pointer.

START MVI A, 08 H ; Load byte in accumulator to reset
PC4.

 OUT 03 H ; Reset PC4 (the bulb will be off).
 MVI A, 08 H ; Load 08 H to accumulator.
 OUT 03 H ; Reset PC4 (the bulb will be off).
 CALL DELAY ; Jump to delay subroutine - to

introduce a regular delay of
constant time.

 MVI A, 09 H ; Load 09 to accumulator to set PC4.
 OUT 03 H ; Set PC4 (the bulb will be on).
 CALL DELAY ; Jump to delay subroutine - to

introduce a regular delay of
constant time.

 JMP START ; Jump to repeat the process.
SUBROUTINE PROGRAM:
 Label Mnemonics Operand Comments

 258

 DELAY LXI D, XXXX H ; Loads DE register pair with a 16-
bit number.

 LOOP DCX D ; Decrements DE register pair by 1.
 MOV A, E ; Moves the contents of E register to

accumulator.
 ORA D ; ORing of the contents of D and E

registers are performed to set the
zero flag.

 JNZ LOOP ; If result is not zero than jump to
LOOP1.

 RET ; Go back to main program.
XXXX H may be taken any hexadecimal number for introducing any desired delay.
Example 8.14. Write a program in assembly language of 8085 to send 01H, 02H, 03H . .
. . . . FFH data to port A of 8255A PPI with a time delay of 1msec to each output.
Solution. The program to implement the above is given as:

Label Mnemonics Operand Comments
 LXI SP, XXXX H ; Initialize stack pointer.

MVI A, 80 H ; Initialize 8255-I to work all the
ports as output ports.

 OUT 03 H ; Write the control word in the
control word register of 8255-I.

 MVI A, 00 H ; Load 00 H to accumulator.
 MVI B, FF H ; Load FF H to B-reg (last data).
LOOP INR A ; Increment acc.
 OUT 00 H ; Send the number to port A.
 CALL DELAY ; Jump to delay subroutine - to

introduce a delay of 1 msec.
 DCR B ; Decrement B.
 JNZ LOOP ; If B is not zero jump to LOOP.
 HLT
SUBROUTINE PROGRAM:
 Label Mnemonics Operand Comments
 DELAY PUSH PSW ; Push the program status word to

stack.
 PUSH B ; Push the contents of B-C reg pair

to stack.
 LXI D, XXXX H ; Loads DE register pair with a 16-

bit number to introduce a delay of
1msec.

 LOOP DCX D ; Decrements DE register pair by 1.
 MOV A, E ; Moves the contents of E register to

accumulator.
 ORA D ; ORing of the contents of D and E

registers are performed to set the
zero flag.

 259

 JNZ LOOP ; If result is not zero than jump to
LOOP1.

 POP B ; Pop the contents from stack to B-C
reg pair back.

 POP PSW ; Pop program status word from
stack.

 RET ; Go back to main program.
Example 8.15. Write a program in assembly language of 8085 that inputs 256 bytes of
data from port B of 8255A PPI with a time delay of 1msec to each input and store these
bytes of data at memory locations starting at 2500 H.
Solution. The program to implement the above is given as:

Label Mnemonics Operand Comments
 LXI SP, XXXX H ; Initialize stack pointer.

MVI A, 82 H ; Initialize 8255-I to work port B as
input port and ports A and
C as as output ports.

 OUT 03 H ; Write the control word in the
control word register of 8255-I.

 LXI H, 2500 H ; Initialize H-L reg pair with first
address of destination location.

 MVI C, FF H ; Load FF H to C reg. as pointer.
LOOP IN 01 H ; Input from port B.
 MOV M, A ; Load the accumulator content to

memory location.
 CALL DELAY ; Jump to delay subroutine - to

introduce a delay of 1 msec.
 INX H ; Increment H-L pair.
 DCR C ; Decrement C.
 JNZ LOOP ; If C is not zero jump to LOOP.
 HLT
SUBROUTINE PROGRAM:
 The delay subroutine program is the same as given in the previous example.

Example 8.16. Suppose 4096 bytes of data are stored in 2000 H to 2FFF H memory
locations. Write a program in assembly language of 8085 that outputs these bytes of data
to port A of 8255A PPI with a time delay of 1msec to each output.
Solution. The program to implement the above is given as:

Label Mnemonics Operand Comments
 LXI SP, XXXX H ; Initialize stack pointer.

MVI A, 80 H ; Initialize 8255-I to work all the
ports as output ports.

 OUT 03 H ; Write the control word in the
control word register of 8255-I.

 LXI H, 19FF H ; Initialize H-L reg pair as pointer.

 260

 INX H ; Increment H-L reg. pair.
 MOV A, M ; Load the data to accumulator.
LOOP OUT 00 H ; Output the data to port A.
 CALL DELAY ; Jump to delay subroutine - to

introduce a delay of 1 msec.
 CPI 2F H ; Compare accumulator contents to

2F H.
 JNZ LOOP ; If not zero jump to LOOP.
 MOV A, L ; Load L-reg data to accumulator.
 CPI FF H ; Compare with FF H.
 JNZ LOOP ; If not zero jump to LOOP.
 HLT
SUBROUTINE PROGRAM:
 The delay subroutine program is the same as given in example 8.14.
Example 8.17. A peripheral device is sending serial data to D7 bit of port B of 8255A at
an interval of 1msec. Write a program in assembly language of 8085 that converts 8 bit
serial data stream to 8 bit parallel word, which is then sent to port A of 8255A.
Solution. The program to implement the above is given as:

Label Mnemonics Operand Comments
 LXI SP, XXXX H ; Initialize stack pointer.

MVI A, 82 H ; Initialize 8255-I to work port B as
input port and ports A and C as
output ports.

 OUT 03 H ; Write the control word in the
control word register of 8255-I.

 MVI B, 00 H ; Store 00 H in register B.
 MVI C, 07 H ; Store 07 H in register C as counter.
 IN 01 H ; Inputs a byte through port B.
 ORA B ; ORing for taking 7th bit.
 RAR ; Change the position.
 MOV B, A ; Store to B register.
 CALL DELAY ; Jump to delay subroutine - to

introduce a delay of 1 msec.
 DCR C ; Decrement C.
 JNZ LOOP ; If not zero jump to LOOP.
 OUT 00 H ; Outputs the data to port A.
 HLT
SUBROUTINE PROGRAM:
 The delay subroutine program is the same as given in example 8.14.
Example 8.18. Suppose 256 bytes of data are stored in the memory locations 2000 H to
20FF H. Write a program in assembly language of 8085 that converts each of these bytes
into serial data stream. The serial data stream is sent (bit by bit) through D0 bit of port A
of 8255A at the rate of approximately 1000 Bits/sec. (i.e. 1msec time interval between
two bits).
Solution. The program to implement the above is given as:

 261

Label Mnemonics Operand Comments
 LXI SP, XXXX H ; Initialize stack pointer.

MVI A, 80 H ; Initialize 8255-I to work all the
ports as output ports.

 OUT 03 H ; Write the control word in the
control word register of 8255-I.

 LXI H, 1FFF H ; Initialize the H-L register pair.
 LOOP INX H ; Increment the H-L register pair.
 MOV A, M ; Store the byte in accumulator.
 MVI B, 00 H ; Store 00 H in register B.
 AGAIN OUT 00 H ; Outputs the bit through D0 bit of

port A.
 CALL DELAY ; Jump to delay subroutine - to

introduce a delay of 1 msec.
 RAR ; Rotate right for the next bit.
 DCR B ; Decrement B.
 JNZ AGAIN ; If not zero jump to AGAIN.
 MOV A, L ; Move the contents of L reg. to

accumulator.
 CPI FF H ; Compare with FF H
 JNZ LOOP ; If not equal jump to LOOP.
 HLT
SUBROUTINE PROGRAM:
 The delay subroutine program is the same as given in example 8.14.
Example 8.19. Write a program in assembly language of 8085 that inputs a byte from
port A of 8255A and determines if the decimal equivalent of the byte is even or odd. If
byte is even, then send ASCII E (45 H) to port B and send ASCII O (4F H) to port B if the
byte is odd.
Solution. The program to implement the above is given as:

Label Mnemonics Operand Comments
 MVI A, 90 H ; Initialize 8255-I to work port A as

input port and ports B and C as
output ports.

 OUT 03 H ; Write the control word in the
control word register of 8255-I.

 IN 00 H ; Inputs the byte through port A.
 ANI 01 H ; ANDed with 01 H to check D0 bit

of the Byte.
 JNZ ODD ; If not zero (odd byte) jump to

ODD.
 MVI A, 45 H ; Load accumulator for ASCII E.
 JMP END ; Jump to END.
 ODD MVI A, 4F H ; Load accumulator for ASCII O.

 262

 END OUT 01 H ; Output ASCII E or ASCII O to
port B.

 HLT
Example 8.20. Write a program in assembly language of 8085 that inputs a byte from
port A of 8255A and determines if the decimal equivalent of the byte is even or odd. If
byte is even, then send ASCII E (45 H) to D0 bit of port B in serial fashion; if odd send
ASCII O (4F H) to D0 bit of port B in serial fashion. The time interval between two
consecutive bits should be 1msec.
Solution. The program to implement the above is given as:

Label Mnemonics Operand Comments
 MVI A, 90 H ; Initialize 8255-I to work port A as

input port and ports B and C as
output ports.

 OUT 03 H ; Write the control word in the
control word register of 8255-I.

 IN 00 H ; Inputs the byte through port A.
 ANI 01 H ; ANDed with 01 H to check D0 bit

of the Byte.
 JNZ ODD ; If not zero (odd byte) jump to

ODD.
 MVI A, 45 H ; Load accumulator for ASCII E.
 JMP END ; Jump to END.
 ODD MVI A, 4F H ; Load accumulator for ASCII O.
 END MVI C, 08 H ; Store 08 H to C register.
 REPEAT OUT 01 H ; Output ASCII E or ASCII O to D0

bit of port B.
 CALL DELAY ; Call Delay subroutine to introduce

a time delay of 1msec.
 RAR ; Rotate right.
 DCR C ; Decrement C.
 JNZ REPEAT ; If not zero jump to REPEAT.
 HLT
SUBROUTINE PROGRAM:
 The delay subroutine program is the same as given in example 8.14.

PROBLEMS
1. Using the functional block diagram of 8255A PPI, explain its detail.
2. Mention various modes of operations of 8255A PPI; explain its working in simple

I/O mode.
3. Draw the schematic block diagram of 8255A and explain the function of each

block.
4. Mention various modes of operations of 8255A and explain it working in BSR

mode. Explain also its control word format.

 263

5. Draw and explain the control word format of 8255A. What will be control word if
8255 is used in simple I/O mode with port A as input port, port B as output port and
port CLower as input port and Port CUpper as output port?

6. Discuss the mode 1 output configuration of 8255. Discuss also its control word,
control signals, timing diagram and status word.

7. Discuss the mode 1 Input configuration of 8255. Discuss also its control word,
control signals, timing diagram and status word.

8. Explain how 8255 can be used in mode 2. Give the format of the control word when
port A is used to operate in mode 2 and port B is operated in mode 1.

9. Give the format of the control word when port A is used to operate in mode 2 and
port B is operated in mode 0. Port CLower is used as simple input or output.

10. Write an assembly language program of 8085A to output the contents of B-register
to port A of 8255 A PPI.

11. Eight LEDs are connected to port B of 8255 A. write an assembly language
program of 8085 to glow LEDs 0, 2, 4, 6 for 1 sec and then glow LEDs 1, 3, 5, 7 for
the same time and repeat.

12. Obtain the control word when the ports of 8255A are to be used in mode 0 with port
A as input port, port B as output port, and port CLower as output port and port Cupper
as input port.

 (Ans. 98 H)
13. Make a control word when the ports of 8255 A are to be used in mode 0 with all the

ports as input ports.
 (Ans. 9B H)

14. Obtain the control word for the following configuration of the ports of 8255 A for
Mode 0 operation:

 Port A and port B as output ports and port CLower as output port; and port Cupper as
input port.

(Ans. 88 H)
15. Obtain the control word for the following configuration of the ports of 8255 A for

mode 1 operation:
 Port A – as input port,
 Mode for Port A – mode 1
 Port B – input port
 Mode for Port B – mode 1,
 The remaining pins of port CUpper are to be used input pins.

 (Ans. BE H or BF H)
15. Obtain the control word for the following configuration of the ports of 8255 A for

mode 1 operation:
 Port A – output port in mode 1,
 Port B – output port in mode 1,
 The remaining pins PC4 and PC5 of port C are to be used output pins.

(Ans. A4 H or A5 H)
16. Obtain the control word for the following configuration of the ports of 8255 A:
 Port A – as bidirectional,
 Mode for Port A – mode 2
 Port B – input port,

 264

 Mode for Port B – mode 0,
 Port CLower –output port.

(Ans. C2 H)
17. Write an assembly language program of 8085A to generate square wave of 100 Hz

frequency using 8255A PPI. The wave should be available at PB0 terminal of port
B. Give the program of delay subroutine also.

18. Generate square wave of 100 Hz using BSR mode of 8255A. The wave should be
available at PC4 terminal (D4 bit of port C).

19. Write a program in 8085 assembly language to blink an LED at a regular interval of
time. Assume LED is connected to PA0 (D0 bit of port A of 8255A PPI).

20. Write a program in 8085 assembly language to blink an LED at a regular interval of
time using Bit Set/Reset (BSR) mode. Assume LED is connected to PC0 (D0 bit of
port C of 8255A PPI).

9
Programmable Interval
Timer/Counter: 8253

In many industrial applications precise time delays are needed. In discrete systems

the time delays are generated using electronic timer based on logic gates and circuits or
mechanical timers. However, in microprocessor based systems the time delays can be
generated using software. The generation of accurate time delays by software control is
very commonly used method as discussed in the earlier chapters of this book. In this
method the processor has to wait for some time to generate a time delay, as
microprocessor becomes unnecessarily busy in looping. The programmable interval
timer/counter chip 8253 solves this problem. It is one of the most supporting chips for
8085 microprocessor. It is used for teal time applications. It can generate accurate time
delays and wave forms using the software control. This chip includes three identical 16-
bit pre-settable down counters that can operate independently, as each counter has a clock
input, gate input and one output. The counters can count in binary or BCD. In this chapter
a detailed discussion on this chip and its applications will be carried out.
9.1 INTEL PROGRAMMABLE INTERVAL TIMER 8253
 Intel 8253 Programmable Interval Timer/Counter is an NMOS 24 pin plastic dual
in line package (DIP). It operates at +5 volt d.c. source. It can generate accurate time
delays and wave forms using the software control. This chip includes three identical 16-
bit pre-settable down counters that can operate independently; namely counter 0, counter
1 and counter 2. The counters can count in binary or BCD. Each counter has a clock
input, gate input and one output. The gate input enables the counting process. The
counting may be started by applying the gate signal. The 8253 works at maximum clock
frequency of 2 MHz. There is another programmable interval time which is upgraded
version of 8253. It has pin compatible and software compatible with 8253. The 8254 can
operate with high clock frequency up to about 8 MHz. This chip 8254 is compatible to
8086, 8088 and other microprocessors. However, 8253 is compatible to
8085microprocessor. We shall discuss the details of the chip 8253.
 The 8253 can operate on the following six modes:
 Mode 0: Interrupt on Terminal Count
 Mode 1: Programmable one shot
 Mode 2: Rate Generator
 Mode 3: Square Wave Generator
 Mode 4: Software Triggered Mode
 Mode 5: Hardware Triggered Mode

 266

 The three counters of this chip can operate independently in any of the six modes.
9.2 BLOCK DIAGRAM OF 8253
 Figures 9.1 and 9.2 show the pin diagram and functional block diagram of 8253.
It has a data bus to be connected to the data bus of the microprocessor, a control word
register, five control signals and three 16-bit presettable down counters namely:
 Counter 0
 Counter 1
 Counter 2.
Control word Register:
 The control word register of 8253 is accessed when A0 and A1 terminals are at
logic 1. It is used to write a command word which specifies the counter to be used, its
mode, and either Read or Write operation,

Fig. 9.1

 The description of pins of 8253 Programmable Interval Timer (PIT) is given as
follows:

Pin Nos. 1-8: form the bidirectional data bus buffer (D7 to D0) to be connected to
the control bus of the microprocessor.

Pin Nos. 9-11: are provided for counter 0. Pin 9 is CLK 0 (Clock input terminal
for counter 0), Pin 10 is OUT 0 (Output terminal for counter 0) and
Pin 11 is GATE 0 (Gate input terminal for counter 0).

Pin No. 12: is the ground terminal.

Pin Nos. 13-15 are allotted to counter 1. Pin 13 is OUT 1 (Output terminal for
counter 1), Pin 14 is GATE 1 (Gate input terminal for counter 1)
and pin 15 is CLK1 (Clock input for counter 1).

 267

Fig. 9.2

Pin Nos. 16-18 are for counter 2. Pin 16 is GATE 2 (Gate input terminal for
counter 2), Pin 17 is OUT 2 (Output terminal for counter 2) and
pin 18 is CLK 2 (Clock input for counter 2).

Pin Nos. 19-20 are A0 and A1 terminals respectively. These terminals are used to
select any one of the three counters and the control word register of
8253. These lines are to be connected to the address bus.

 The counters and control word register are selected as given in
table 9.1.

 268

Table 9.1

Pin No. 21 is CS (Chip select terminal). It is an active low signal which
allows enabling the device.

Pin No. 22 is RD (Read terminal). It is also an active low signal. A low to this
pin informs the 8253; that the CPU is ready to receive the data in
the form of count value.

Pin No. 23 is WR (Write terminal). When this pin is low, the microprocessor
outputs data in the form of mode operation or loading of counter.

Pin No. 24 is + VCC (+5 V) terminal.
9.3 LOGICS FOR COUNTERS
 As already discussed, the 8253 has five control signals CS, RD, WR, A1 and A0 .
The table 9.2 shows the action of different combination of these control signals.
 Table 9.2

CS RD WR A1 A0 Actions

0 1 0 0 0 Load counter 0
0 1 0 0 1 Load counter 1
0 1 0 1 0 Load counter 2
0 1 0 1 1 Write Mode Word
0 0 1 0 0 Read counter 0
0 0 1 0 1 Read counter 1
0 0 1 1 0 Read counter 2
0 0 1 1 1 No operation 3 state
0 1 1 X X No operation 3-state
1 X X X X Disable 3-state
Note: X indicates undefined state, i.e. it does not matter whether it is 0 or 1.

 From this table it is clear that when 0== WRCS and 1=RD with different
combination of A1 and A0; any counter can be selected and loaded with 16 counter
values. Once the gate is enabled by applying a high signal (logic 1) to it, counter values
starts decrementing at each of the trailing edge of the clock pulse. However, if

0== RDCS and 1=WR , the counter read operation is performed by the different
counters.

A0 A1 Selection for Counters

0 0 Counter 0 is selected.
0 1 Counter 1 is selected.
1 0 Counter 2 is selected.
1 1 Counter 3 is selected.

 269

 The clock pulse is to be applied to CLK terminal of each counter of 8253. Though
the clock signal of 3 MHz frequency is available with 8085 microprocessor but it can not
directly be applied to the CLK terminal of each counter. Since 8253 can work with a
maximum of 2 MHz clock frequency. So the clock frequency available with 8085
microprocessor is divided by a factor of 2 using an edge triggered D-flip flop (7474) as
shown in figure 9.3. So 1.5 MHz clock frequency available at the output of D-flip flop
can be used as CLK input of the counters of 8253. In some microprocessor kits available
in the market for use in laboratories, the CLK terminals of the counters are left open so
that any clock signal of desired frequency may be connected to these terminals.

 Fig. 9.3

9.4 CONTROL WORD FORMAT OF 8253
 As already discussed, any of the three counters can be programmed to operate in
any of the 6 modes. The control word decides the selection of counter, its mode of
operation, loading, sequence of the count and selection of binary or BCD counting. The
format for the control word of 8253 is shown in figure 9.4. The control word is written
into the control word register of 8253, as per the requirement.

 270

 Fig. 9.4
 The description of the bits of control word format is given as:
 Bit D0 Sets the counting of the counter in binary or BCD.
 To make the counting in BCD this bit is set to 1, and
 to make the counting in binary this bit is set to 0.
 Bits D1-D3 These three bits are called mode selection bits M0, M1 and M2

respectively; and are used for mode selection of the counters which
are given in table 9.3.

 Table 9.3

D3 D2 D1 Mode
(M 2) (M1) (M0)
0 0 0 Mode 0
0 0 1 Mode 1
X 1 0 Mode 2
X 1 1 Mode 3
1 0 0 Mode 4
1 0 1 Mode 5

 271

Bits D4-D5 These bits are known as Read/Load bits (RL0 and RL1) and are

used for read/load of the count values in the counters. Their
operations are given in table 9.4.

 Table 9.4
D5 D4 Mode
(RL 1) (RL0)
0 0 Counter latching operation
0 1 Read/Load LSB only
1 0 Read /Load MSB only
1 1 Read/Load LSB first then
 MSB

Bits D6-D7 These bits (SC0 and SC1) are used for counter selection as given in
table 9.5.

 Table 9.5

D7 D6 Select counter
(SC1) (SC0)
0 0 Counter 0
0 1 Counter 1
1 0 Counter 2
1 1 Illegal

9.5 INTERFACING AND PROGRAMMING OF 8253
 Figure 9.5 shows interfacing of 8253 with the 8085 system bus. The eight data
lines D0 to D7 of 8253 are connected to the data bus (Address data bus AD0-AD7) of the

microprocessor. The chip is selected with CS terminal. So higher order address bus of
the system is used for decoder circuit to select the chip. The A8 and A9 (two LSBs of the
address bus) terminals of the microprocessor address bus are connected to A0 and A1
terminals of 8253 to select the proper counter. i.e.

 272

Fig. 9.5

 Figure 9.6 shows the chip-select logic for 8253. From this logic diagram it is clear

that if A2 – A3, A5 – A7 are all at logic 0 and A3 is at logic 1, then it enables CS to select
this chip. The counter selection will depend on the bits A1 – A0 as shown in table 9.6.

 Table 9. 6

CS
A7 A6 A5 A4 A3 A2

A1 A0

HEX
ADDRESS

Counter
Selection

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 1 0 0

 0 0

 0 1

 1 0

 1 1

10 H

11 H

12 H

13 H

Counter 0

Counter 1

Counter 2

Control word
Register

 273

Fig. 9.6
 As usual with IN and OUT instructions, the 8085 duplicates the port address on
the address bus and data bus. The OUT instruction loads the control word in the control
word register. As discussed above we may choose the hexadecimal address as
 10 H for counter 0
 11 H for counter 1
 12 H for counter 2
 13 H for control word register (CWR).
 The OUT 13 H will load the accumulator content to the control word register. The
accumulator is therefore, to be loaded to the proper control word (as decided by the
control word format) before OUT 13 H instruction. This way 8253 is initialized. To load
the count values to the counter number initialized by the OUT 13 instruction, again OUT
instruction is used having the proper control word.
 The IN instruction with proper port address will read the count values of the
counter without stopping the counting. The 8253 can thus be programmed through write
operations to generate various types of wave forms (which will be discussed in the
succeeding section of this chapter) by loading the proper count values to any of the
counters used in different modes.
 So for programming the 8253 we proceed as given in the flow chart (figure 9.7).

 274

Fig. 9.7

 For example to load counter 0 in mode 0 for the count value 1639 H in binary, we
follow the program given below. The control word, to initialize the 8253 to load the
given count value, first LS byte and then MS byte to the counter 0 in mode 0, is shown in
figure 9.8.

 Fig. 9.8
Program:
Label Mnemonics Operand Comments

MVI A, 30 H ; Accumulator is loaded with the
control word 30 H to Initialize
8253.

 275

 OUT 13 H ; Write the control word in the
control word register of 8253.

 MVI A, 39 H ; Load accumulator with LS byte
(39) of the count value.

 OUT 10 H ; First LS byte of the count value is
loaded to the counter 0 of 8253.

 MVI A, 16 H ; Load accumulator with MS byte
(16) of the count value.

 OUT 10 H ; MS byte of the count value is then
loaded to the counter 0 of 8253.

 The count value of any counter of 8253 can also be read without stopping the
counting. The bit pattern for the control word (figure 9.9) for latching operation is as
follows:

Fig. 9.9

 The control word for latching operation for counter 0 is 00 H as shown in figure
9.10.

Fig. 9.10

 So the following program can be used to read the count value of counter 0 while
counting is in program.
Program:
Label Mnemonics Operand Comments

MVI A, 00 H ; Control word 00 H to read the
count value of the counter 0 is
loaded to accumulator.

 OUT 13 H ; The control word is loaded in the
control word register of 8253.

 276

 IN 10 H ; First read the LS byte of the count
value.

 MOV B, A ; Load this value to B-register.
 IN 10 H ; Read the MS byte of the count

value.
 MOV C, A ; Load this value in C-register.
 MVI A, 16 H ; Load accumulator with MS byte of

the count value.

Example 9.1. Initialize 8253 to load counter 1 in mode 0 with 8bit binary number 06 H.
Solution. To initialize 8253 we have the control word as (Figure 9.11):

 Fig. 9.11
 The program for the same is written as:
Program:
Label Mnemonics Operand Comments

MVI A, 50 H ; Accumulator is loaded with the
control word 50 H to Initialize
8253.

 OUT 13 H ; Write the control word in the
control word register of 8253.

 MVI A, 06 H ; Load accumulator with LS byte (06
H) only of the count value.

 OUT 11 H ; 06 H of the count value is loaded
to the counter 1 of 8253.

 HLT ; Stop processing.
Example 9.2. Initialize 8253 to load counter 0 in mode 1 with 1632 H BCD number.
Solution. To initialize 8253 we have the control word as (Figure 9.12):
 The program for the same is written as:
Program:
Label Mnemonics Operand Comments

MVI A, 33 H ; Accumulator is loaded with the
control word 33 H to Initialize
8253.

 OUT 13 H ; Write the control word in the
control word register of 8253.

 277

 MVI A, 32 H ; Load accumulator first with LS
byte (32 H) of the count value
1632 H.

 OUT 10 H ; 32 H of the count value is loaded
to the counter 0 of 8253.

 MVI A, 16 H ; Load accumulator then with MS
byte (16 H) of the count value.

 OUT 10 H ; 16 H of the count value is loaded
to the counter 0 of 8253.

 HLT ; Stop processing.

 Fig. 9.12
Example 9.3. Initialize 8253 to load counter 2 in mode 1 with a count value 500010 in
mode 0. Read the count value on the fly.
 Solution. To initialize 8253 we have the control word as (Figure 9.13):

Fig. 9.13

 The control word for latching operation for counter 2 is 80 H as shown in figure
9.14.

Fig. 9.14

 The program for the same is written as:

 278

 The hexadecimal equivalent of 500010 is 1388 H.
Program:
Label Mnemonics Operand Comments

MVI A, B2 H ; Accumulator is loaded with the
control word B2 H to Initialize
8253.

 OUT 13 H ; Write the control word in the
control word register of 8253.

 MVI A, 88 H ; Load accumulator first with LS
byte (88 H) of the count value
1632 H.

 OUT 12 H ; 88 H of the count value is loaded
to the counter 2 of 8253.

 MVI A, 13 H ; Load accumulator then with MS
byte (13 H) of the count value.

 OUT 12 H ; 16 H of the count value is loaded
to the counter 2 of 8253.

 MVI D, 00 H ; Store 00 H to D-register.
LOOP MVI A, 80 H ; Control word 80 H to read the

count value of the counter 2 is
loaded to accumulator.

 OUT 13 H ; The control word is loaded in the
control word register of 8253.

 IN 12 H ; First read the LS byte of the count
value.

 MOV B, A ; Load this value to B-register.
 IN 12 H ; Read the MS byte of the count

value.
 ORA B ; Logical OR the LS and MS byte to

set zero flag.
 JNZ LOOP ; If not zero jump to LOOP.
 HLT ; Stop processing.
9.6 PROGRAMMING OF 8253 IN MODE 0: INTERRUPT ON TER MINAL

COUNT
 The MODE 0 is interrupt on terminal count. The output of the desired counter
goes low on setting the mode, and goes high after the loaded counts are complete. It is
used for the generation of precise time delay under software control. After the selection
of desired counter, a suitable count value is loaded in the counter. The GATE terminal of
the selected counter is made high from low. The down counting of the counter will be
started. At the beginning of the counter, OUT terminal becomes low and remains low till
the counting is stopped at the zero count value. On reaching the terminal count (i.e. count
value becomes zero), the OUT terminal becomes high (logic 1) and remains high until
and unless the selected counter is reloaded or a new count value is loaded or the mode of
operation is changed. Further, if the count value is reloaded in count register while the
counting is in progress, then after LS byte of the count value is written, the current
counting is stopped; and after MS byte of the count value is written, the counting restarts

 279

with the new count value. The timing diagram for mode 0 operation is shown in figure
9.15.

 Fig. 9.15
 If during the counting operation, GATE terminal is made low from high, the
counting will be suspended. If the GATE terminal is again made high the counting may
be resumed at the trailing edge of the clock pulse from the value where the counting was
suspended. This is depicted in figure 9.16. The OUT terminal can be used to interrupt the
microprocessor.

 Fig. 9.16
9.7 PROGRAMMING OF 8253 IN MODE 1: PROGRAMMABLE ONE SHOT
 The MODE 1 is Programmable or retriggerable one shot. In this mode the OUT
terminal of the counter goes low on the triggering of corresponding GATE input (low to
high transition); which (OUT terminal) goes high on terminal count. The OUT terminal
remains low for the count value loaded to the counter.

 280

 Initially control word and count values are loaded to the device register. A leading
edge trigger signal is applied to the GATE input of the selected counter. At the next
trailing edge of the clock the OUT terminal goes low. The down counting of the counter
will now start and at the terminal count (i.e. count value becomes zero) the OUT terminal
becomes high. In other word we can say that the OUT terminal remains low for the
number of counts loaded in the selected counter. In this mode the counter thus be used as
a triggered mono (or one) shot of desired width. This width can be varied by the count
value loaded for the selected counter. It is illustrated in figure 9.17. The changing signal
from high to low to GATE terminal does not affect the signal of OUT terminal, once the
counting is started.

Fig. 9.17

Fig. 9.18

 If the signal at the GATE terminal is changed from low to high when the counting
is in progress, then the counting will be stopped for exactly one clock pulse. After one

 281

clock pulse, the recounting will be started from the beginning i.e. the counter will be
reloaded with the same count value and the down counting will be started again and the
OUT terminal goes low for the same count value. Thus it is also called retriggerable one
shot. This situation is shown in figure 9.18.
 A new count may be loaded to the counter while OUT terminal is low; it will not
affect the width of the low OUT signal until the next trigger is applied to the GATE.
9.8 PROGRAMMING OF 8253 IN MODE 2: RATE GENERATOR
 Any counter of 8253 may be programmed to operate in mode 2 as rate generator
which is also called as divide by N counter.
 Initially control word for mode 2 and count value N are loaded into the selected
counter. The down counting of the counter will be started as soon as a high signal to the
GATE terminal of the counter is applied. The OUT terminal stays high for (N-1) clock
pulses and becomes low for exactly one clock pulse. After this OUT signal goes high
again for (N-1) clock pulses and low for one pulse as the count value N is reloaded into
the selected counter. This process continues as long as the GATE terminal is high. It,
therefore, works as divide by N counter. Further, if the counter is working in this mode
and a new count value is loaded, the present period will not be affected but the
subsequent period will be as per the new count value. The timing diagram is shown in
figure 9.19.

Fig. 9.19

 The GATE input when low, will force the OUT terminal to high. When the GATE
input goes high, the counter will start from the initial count. Thus the GATE can be used
to synchronize the counter.
9.9 PROGRAMMING OF 8253 IN MODE 3: SQUARE WAVE GENERATOR
 When 8253 operate in mode 3, the counter acts as a square wave generator. This
is similar to mode 2 with the difference that the OUT terminal of the selected counter in
mode 3 remains high for half the count value and is low for the other half, if the count
value is an even number. However, if the count value is an odd value, OUT terminal

remains high for

 +
2

1N
 clock pulses and is low for

 −
2

1N
 clock pulses.

 282

 When control word for mode 3 and count value N are loaded into the selected
counter, a high signal at the GATE terminal starts the down counting. The OUT terminal

remains high for

2

N
 counts and is low for the next

2

N
 counts, if the count value N is

even; and for odd value of N, the OUT signal is high for

 +
2

1N
 pulses and is low for

 −
2

1N
 pulses as mentioned above. The count value is reloaded with full count and the

process is repeated till the GATE is high. Figure 9.20 shows the timing diagram for this
mode of operation for both even and odd count value.

 Fig. 9.20
 The mode of operation of 8253 generates a square wave of period specified by the
count value loaded to the counter. Any change in count value becomes effective, after the
present counts are over.
9.10 PROGRAMMING OF 8253 IN MODE 4: SOFTWARE TRIGGE RED

STROBE
 In this mode of operation software controlled delayed negative pulse of one clock
period duration is generated with and without synchronization. After the mode of
operation of 8253 is set, the OUT terminal will be high, and the down counting of the
counter will start as soon as the count value is loaded into the counter. On terminal count,

 283

the OUT terminal goes low for one clock pulse then will go high again as shown in figure
9.21.

 Fig.9.21
 If the count register is reloaded between the output pulses, the present period will
not be affected, but the subsequent period will reflect the new count value. The counter
will be inhibited when the GATE terminal goes low. The GATE input can, therefore, be
used for synchronization. The generation of strobe signal at OUT terminal is triggered by
loading the count value in the counter that is why this mode is called software triggered
mode.
9.11 PROGRAMMING OF 8253 IN MODE 5: HARDWARE TRIGGE RED

STROBE
 In this mode of operation a delayed negative pulse of one clock period duration is
generated if a positive going trigger input is applied at the GATE terminal. After the
mode of operation of 8253 is set, and the count value is loaded into the counter OUT

 Fig. 9.22

 284

terminal will be initially high. As the rising edge signal is applied to GATE terminal, the
down counting of the counter will be started at the first trailing edge of the clock pulse
after the rising edge of the GATE input. On terminal count, the OUT terminal goes low
for one clock pulse then will go high again. The timing diagram for this mode of
operation is shown in figure 9.22. As the low to high transition of the GATE terminal
causes triggering hence this mode is referred to as hardware triggered strobe.
 If the GATE input is made low to high again the counter is reloaded by the same
count value. The down counting of the count value once again started and on the terminal
count the OUT terminal goes low for one clock period.
Example 9.4. An LED is connected to PA0 of 8255 PPI. It should show ON and OFF
regularly with a delay of one second. The delay should be introduced with 8253 used in
mode 0 of counter 1. Assume the clock frequency applied to the counter of 8253 is 2
MHz.
Solution. The control word to initialize 8253 is (Figure 9.23):

Fig. 9.23

 The control word for latching operation for counter 2 is 80 H as shown in figure
9.24.

Fig. 9.24

 Since the frequency of the clock signal connected to CLK terminal is 2 MHz, so the
time of one clock pulse is 0.5 µ sec. If a count value of 5000010 (C350 H) is loaded to the
counter, then a delay of 25 msec may be introduced when the counter is used in mode 0.
Further to introduce a total time delay of 1 sec, then the subroutine program used for 25
msec may be executed 40 (28 H) times. Thus the program having the subroutine is given
below:
Main Program:
Label Mnemonics Operand Comments
 LXI SP, XXXX H ; Initialize stack pointer.
 MVI A, 80 H ; Initialize 8255 PPI with all the

ports as output ports.
 OUT 03 H ; The control word is loaded to the

control word register of 8255.
 MVI B, 00 H ; Load the register B with 00 H.

 285

 MOV A, B ; 00 H is stored in accumulator.
LOOP1 OUT 00 H ; 00 is send to port A of 8255 so that

LED is OFF.
 MVI C, 28 H ; C register is used as counter so that

the delay subroutine is executed 40
times.

LOOP CALL DELAY ; Delay program for the delay of 25
msec is called.

 DCR C ; Decrement C.
 JNZ LOOP ; If the content in C becomes zero,

jump to LOOP.
 MOV A, B ; Move the content of B in

accumulator.
 CMA ; Complement the accumulator

contents.
 MOV B, A ; Complemented content of

accumulator is stored in B register.
 JMP LOOP1 ; Jump to LOOP1 to change the state

of LED.
Subroutine Program:

DELAY MVI A, 70 H ; Accumulator is loaded with the
control word 70 H to Initialize
counter 1 of 8253.

 OUT 13 H ; Write the control word in the
control word register of 8253.

 MVI A, 50 H ; Load accumulator first with LS
byte (50 H) of the count value
C350 H.

 OUT 11 H ; 50 H of the count value is loaded
to the counter 1 of 8253.

 MVI A, C3 H ; Load accumulator then with MS
byte (C3 H) of the count value.

 OUT 11 H ; C3 H of the count value is loaded
to the counter 1 of 8253.

AGAIN MVI A, 40 H ; Control word 40 H is loaded to
accumulator to read on fly the
count value of the counter 1.

 OUT 13 H ; The control word is loaded in the
control word register of 8253.

 IN 11 H ; First read the LS byte of the count
value.

 MOV D, A ; Load this value to D-register.
 IN 11 H ; Read the MS byte of the count

value.
 ORA D ; Logical OR the LS and MS byte to

set zero flag.

 286

 JNZ AGAIN ; If not zero jump to AGAIN.
 RET ; Return to main program.
Example 9.5. The OUT terminal of counter 0 of 8253 is connected to RST 7.5, which is
used to interrupt the microprocessor to clear the memory locations 2100 H to 21FF H.
Use counter 0 of 8253 in mode 0 to enable RST 7.5 after a delay of 32.5 msec. Assume
the clock frequency applied to the counter 0 of 8253 is 2 MHz.
Solution. The control word to initialize counter 0 of 8253 is:

 D7 D6 D5 D4 D3 D2 D1 D0
 0 0 1 1 0 0 0 0 = 30 H
 The accumulator contents for SIM to enable RST 7.5, RST 6.5 and RST 5.5 are
given by:

 D7 D6 D5 D4 D3 D2 D1 D0
 SOD SOE X R7.5 MSE M7.5 M6.5 M5.5
 0 0 0 0 1 0 0 0 = 08 H
 The clock frequency used for counter 0 is 2 MHz, so time for one clock pulse is
0.5 secµ . To introduce a delay of 32.5 msec, count value of 65000 (65000 x 0.5 secµ =
32.5 msec) is to be loaded to the counter 0. The hexadecimal equivalent of 6500010 is
FDE8 H.
Main Program:
Label Mnemonics Operand Comments

 EI ; Enable interrupts.
 MVI A, 08 H ; Bit pattern is loaded to

accumulator to enable interrupts.
 SIM ; Enable interrupts.
 MVI A, 30 H ; Accumulator is loaded with the

control word 30 H to Initialize
counter 0 of 8253 in mode 0.

 OUT 13 H ; Write the control word in the
control word register of 8253.

 MVI A, E8 H ; Load accumulator first with LS
byte (E8 H) of the count value
FDE8 H.

 OUT 10 H ; E8 H of the count value is loaded
to the counter 0 of 8253.

 MVI A, FD H ; Load accumulator then with MS
byte (FD H) of the count value.

 OUT 10 H ; FD H of the count value is loaded
to the counter 0 of 8253.

HERE JMP HERE ; Wait for interrupt.
 As soon as the counting is over, the OUT terminal of counter 0 becomes high which
enables RST 7.5. The RST 7.5 interrupts the microprocessor and the program jumps to its
vector location 003C H. At this vector location say it is stored JMP FFBD H. So the
monitor will transfer the program from FFBD H. Now the user transfers the program
from FFBD H to a memory location where service subroutine program for RST 7.5 is

 287

stored. The program in service subroutine will be stored to clear the memory location
2100 H to 21FF H.
Interrupt Service Subroutine:
Label Mnemonics Operand Comments

 LXI H, 2100 H ; H-L pair is loaded with 2100 H,
starting address of the memory
location.

 MVI C, FF H ; Load FF H to C-register which is
used as counter.

 XRA A ; Clear the accumulator.
LOOP MOV M, A ; Clear the memory location.
 INX H ; Increment the H-L register pair.
 DCR C ; Decrement the content of C-

register for next byte.
 JNZ LOOP ; If the contents of C-register are not

zero then jump to LOOP for next
byte.

 EI ; Enable interrupts.
 RET ; Return.

Example 9.6. A positive going pulse is applied (figure 9.25) to the GATE terminal of
counter 1 of 8253 used in mode 0. The RST 7.5 is used to interrupt the microprocessor.
Write a program to measure the width of this pulse which is of approximately 1 second.
The clock signal applied to CLK terminal of counter 1 is 10 KHz. The width should be
stored in terms of counts in memory locations 2100 H and 2101 H.

Fig. 9.25

Solution. The control word to initialize counter 1 of 8253 is:

 D7 D6 D5 D4 D3 D2 D1 D0
 0 1 1 1 0 0 0 0 = 70 H

 288

 The accumulator contents for SIM to enable RST 7.5, RST 6.5 and RST 5.5 are
given by:

 D7 D6 D5 D4 D3 D2 D1 D0
 SOD SOE X R 7.5 MSE M 7.5 M 6.5 M 5.5
 0 0 0 0 1 0 0 0 = 08 H
 The clock frequency used for counter 1 is 10 KMHz, so time for one clock pulse
is 0.1 msec. This will also be measurement accuracy. Let us initialize the counter 1 with
the count value corresponding to 2 second (1 sec for high and 1 sec for low). The count
value will be 2000010, (as 20000x0.1 msec = 2 sec). The hexadecimal equivalent of
2000010 is 4E20 H. So 4E20 H will be loaded as count value in counter 1.
 To measure the pulse width the counter 1 is initialized in mode 0 in which signal
(High pulse) on GATE terminal enables the counter; and RST 7. 5 is disabled. As soon as
the pulse ends, the counting will be stopped and RST 7.5 will interrupt the
microprocessor. The interrupt service subroutine will store the required number of counts
in 2100 H and 2101 H memory locations. The required number of counts will be obtained
by subtracting the remaining counts from the initial counts.
 The program is therefore given by:
Main Program:
Label Mnemonics Operand Comments

 EI ; Enable interrupts.
 MVI A, 08 H ; Bit pattern is loaded to

accumulator to enable interrupts.
 SIM ; Enable interrupts.
 MVI A, 70 H ; Accumulator is loaded with the

control word 70 H to Initialize
counter 1 of 8253 in mode 0.

 OUT 13 H ; Write the control word in the
control word register of 8253.

 MVI A, 20 H ; Load accumulator first with LS
byte (20 H) of the count value
4E20 H.

 OUT 11 H ; 20 H of the count value is loaded
to the counter 1 of 8253.

 MVI A, 4E H ; Load accumulator then with MS
byte (4E H) of the count value.

 OUT 11 H ; 24E H of the count value is loaded
to the counter 1 of 8253.

HERE JMP HERE ; Wait for interrupt.
Interrupt Service Subroutine:
Label Mnemonics Operand Comments

 LXI H, 2100 H ; H-L pair is loaded with 2100 H,
starting address of the memory
location.

 IN 11 H ; Read the LS byte of the remaining
counts.

 289

 MOV D, A ; Store it to D-register.
 IN 11 H ; Read the MS byte of the remaining

counts.
 MOV E, A ; Store it to E-register. So the

remaining counts are stored in D-E
register pair.

 MVI A, 20 H ; Initial maximum LS byte (20 H) is
stored in accumulator.

 SUB D ; Subtract the remaining LS byte
from maximum LS byte.

 MOV M, A ; Store the counts in 2100 H.
 INX H ; Increment the H-L register pair.
 MVI A, 4E H ; Initial maximum MS byte is stored

in accumulator.
 SBB E ; Subtract with borrow the

remaining MS byte from the
maximum MS byte.

 MOV M, A ; Store the counts in 2101 H.

 EI ; Enable interrupts.
 RET ; Return.

Example 9.7. The D0 bit of 8255 A PPI is connected trigger input (GATE terminal) of
counter 2 of 8253 as shown in figure 9.26. The counter 2 is used in mode 1. The count to
be loaded to the counter 2 is 0A H. Write a program so that a wave, having low for 10
pulse duration and repeats, is generated. The CRO may be connected to the OUT
terminal of counter 2 to see the wave shape.

Fig. 9.26

Solution. The control word to initialize counter 0 of 8253 is:

 D7 D6 D5 D4 D3 D2 D1 D0
 1 0 0 1 0 0 1 0 = A2 H

 290

Main Program:
Label Mnemonics Operand Comments

 MVI A, 30 H ; Accumulator is loaded with the
control word 30 H to Initialize
counter 2 of 8253 in mode 1.

 OUT 13 H ; Write the control word in the
control word register of 8253.

 MVI A, 0A H ; Load accumulator 0A H as count
value.

 OUT 12 H ; 0A H of the count value is loaded
to the counter 2 of 8253.

 MVI A, 80 H ; Initialize 8255 A PPI with all the
ports to use as output ports.

 OUT 03 H ; 80 H is loaded to control word
register of 8255.

 MVI A, 00 H ; Store 00 H to accumulator.
 OUT 00 H ; PA0 is zero.
 MVI A, 01 ; Store 01 H to accumulator to make

PA0 as 1.
 OUT 00 H ; PA0 is 1.
 CALL DELAY ; Call a delay program to introduce a

small delay.
 JMP LOOP ; Jump to LOOP for repetition.

DELAY SUBROUTINE :
Label Mnemonics Operand Comments
DELAY MVI C, FF H ; Store FF H to C register to use it as

counter.
LOOP DCR C ; Decrement counter.
 JNZ LOOP ; If count is not zero jump to LOOP.
 RET ; Return to main program.

Example 9.8. Write a program that will count the approximate number of T-states in a
program given below. The SOD line of 8085 is connected to the GATE terminal of
counter 1 of 8253. The 8253 is used in mode 1. The crystal of 8085 is of 2 MHZ which is
directly connected to CLK input of the counter. The number of T-states used is to be
stored in memory locations 2200 H and 2201 H.
Label Mnemonics Operand

 LHLD 2101 H
 XCHG
 LHLD 2103 H
 MVI C, 00 H
 DAD D
 JNC NXT
 INR C
NXT SHLD 2105 H

 291

 MOV A, C
 STA 2107 H
 HLT

Solution. The control word to initialize counter 1 of 8253 in mode 1 is:

 D7 D6 D5 D4 D3 D2 D1 D0
 0 1 1 1 0 0 1 0 = 72 H
 Let us load FFFF H as count value in counter 2.
Main Program:
Label Mnemonics Operand Comments

 MVI A, 72 H ; Accumulator is loaded with the
control word 72 H to Initialize
counter 1 of 8253 in mode 1.

 OUT 13 H ; Write the control word in the
control word register of 8253.

 MVI A, FF H ; Load accumulator with low byte of
count value.

 OUT 11 H ; Low byte FF H of the count value
is loaded to the counter 1 of 8253.

 MVI A, FF H ; Load accumulator with High byte
of count value.

 OUT 11 H ; High byte FF H of the count value
is loaded to the counter 1 of 8253.

 CALL MODPRG ; Call the modified program.
 LXI H, 2200 H ; H-L pair is loaded with 2200 H,

starting address of the memory
location.

 IN 11 H ; Read the LS byte of the remaining
counts.

 MOV D, A ; Store it to D-register.
 IN 11 H ; Read the MS byte of the remaining

counts.
 MOV E, A ; Store it to E-register. So the

remaining counts are stored in D-E
register pair.

 MVI A, FF H ; Initial maximum LS byte (FF H) is
stored in accumulator.

 SUB D ; Subtract the remaining LS byte
from maximum LS byte.

 MOV M, A ; Store the counts in 2100 H.
 INX H ; Increment the H-L register pair.
 MVI A, FF H ; Initial maximum MS byte is stored

in accumulator.
 SBB E ; Subtract with borrow the

remaining MS byte from the
maximum MS byte.

 292

 MOV M, A ; Store the counts in 2101 H.
 EI ; Enable interrupts.
 HLT ; Stop processing.

 Label Mnemonics Operand Comments

MODPRG MVI A, C0 H ; Control word for enabling SOE
and SOD.

 SIM ; Set SOD line.
 IN 11 H ; Read the LS byte of the remaining

counts.
 MOV D, A ; Store it to D-register.
 LHLD 2101 H ;
 XCHG ;
 LHLD 2103 H ;
 MVI C, 00 H ; Given program
 DAD D ;
 JNC NXT ;
 INR C ;
NXT SHLD 2105 H ;
 MOV A, C ;
 STA 2107 H ;
 MVI A, 40 H ; Control word for enabling SOE

and resetting SOD.
 SIM ; Reset SOD line.
 RET ; Return to main program.

Example 9.9. Write a program to generate a negative pulse of approximately one T state
after every 4 msec using 8253. Consider 1 MHz clock signal is applied to CLK terminal
of the counter 1 of 8253.
Solution. A negative pulse of approximately one T state is to be generated. This is the
problem of rate generator, so 8253 may be used in mode 2. The counter 1 is to be
initialized for this purpose. The GATE terminal is kept high. Further, clock frequency is
1 MHz so the time for one T state is 1 µsec.
 The number of counts to be loaded for 2 msec delay is given by:

 =
sec1

sec4

µ
m

 =400010.

 The number 4000 may be counted in BCD.
 The control word to initialize counter 1 of 8253 in mode 2 is:

 D7 D6 D5 D4 D3 D2 D1 D0
 0 1 1 1 0 1 0 1 = 7A H
 The program is, therefore, written as:
Main Program:
Label Mnemonics Operand Comments

 293

 MVI A, 7A H ; Accumulator is loaded with the
control word 7A H to Initialize
counter 1 of 8253 in mode 2.

 OUT 13 H ; Write the control word in the
control word register of 8253.

 MVI A, 00 H ; Load accumulator with low byte of
count value.

 OUT 11 H ; Low byte 00 H of the count value
is loaded to the counter 1 of 8253.

 MVI A, 40 H ; Load accumulator with High byte
of count value.

 OUT 11 H ; High byte 40 H of the count value
is loaded to the counter 1 of 8253.

 HLT ; Stop processing.
Example 9.10. Use counter 1 of 8253 in mode 2 as divide-by-8 counter.
Solution. The GATE terminal is kept high.
 The control word to initialize counter 1 of 8253 in mode 2 is:

 D7 D6 D5 D4 D3 D2 D1 D0
 0 1 0 1 0 1 0 0 = 54 H
 The program is written as:
Main Program:
Label Mnemonics Operand Comments

 MVI A, 54 H ; Accumulator is loaded with the
control word 54 H to Initialize
counter 1 of 8253 in mode 2.

 OUT 13 H ; Write the control word in the
control word register of 8253.

 MVI A, 08 H ; Load accumulator with count value
08 H.

 OUT 11 H ; Count Value is loaded to the
counter 1 of 8253.

 HLT ; Stop processing.

Example 9.11. Write a program to generate a square wave of 3 KHz frequency using
counter 1 of 8253. Consider 1.5 MHz clock signal is applied to CLK terminal of the
counter.
Solution. To generate square wave, we use the 8253 in mode 3. The count value to be
loaded to the counter 1 is given by:

 =
KHz

MHz

3

5.1
 =50010.

 So load 0500 H in BCD to counter 1. The GATE terminal of counter 1 kept high.
 The control word to initialize counter 1 of 8253 in mode 2 is:

 D7 D6 D5 D4 D3 D2 D1 D0
 0 1 1 1 0 1 1 1 = 77 H

 294

 The program is, therefore, written as:
Main Program:
Label Mnemonics Operand Comments

 MVI A, 77 H ; Accumulator is loaded with the
control word 77 H to Initialize
counter 1 of 8253 in mode 3.

 OUT 13 H ; Write the control word in the
control word register of 8253.

 MVI A, 00 H ; Load accumulator with low byte of
count value.

 OUT 11 H ; Low byte 00 H of the count value
is loaded to the counter 1 of 8253.

 MVI A, 50 H ; Load accumulator with High byte
of count value.

 OUT 11 H ; High byte 50 H of the count value
is loaded to the counter 1 of 8253.

 HLT ; Stop processing.

PROBLEMS
1. Draw the schematic block diagram of programmable interval timer (PIT) 8253 and

explain its detail..
2. Discuss the control word format for 8253.
3. Describe Read/Write control logic for 8253.
4. Explain the different modes of 8253.
5. Discuss different applications of 8253.
6. Discuss how 8253 can be used as rate generator.
7. Discuss how 8253 can be used as programmable mono shot.
8. Discuss how 8253 can be used as square wave generator.
9. Discuss how 8253 can be used as software triggered strobe.
10. Discuss how 8253 can be used as hardware triggered strobe.
11. Explain how to generate a delay using 8253 in mode 0.
12. Explain how the count value loaded to a counter of 8253 is read while the counting

is in progress.
13. Write a program to generate a square wave of 1 KHz using 8253 in mode 3. The

CLK terminal of the counter used is connected to a clock frequency of 1 MHz.
14. Assume that CLK terminal of the counter 0 of 8253 is connected to clock frequency

of 1 KHz. It is desired to generate square wave of 1 Hz frequency using this
counter. Write a program to implement this.

15. Set up 8253 as a square wave generator of 1 msec time period, if the input
frequency connected to CLK terminal of counter 0 is 1 MHz.

16. Write a program to generate a negative pulse of approximately one T-state after
every 1 msec. Consider 2 MHz clock frequency is applied to the CLK terminal of
the counter 1.

17. Connect PC0 of 8255 A PPI to the trigger input (GATE 0) of counter 0 of 8253 used
in mode 1. Load the count 0024 H (binary). Write a program to generate a wave
having low for 36 pulses and repeat.

 295

18. The OUT terminal of counter 0 of 8253 is connected to RST 7.5. It is used to
interrupt the microprocessor to set SOD line of 8085 after a delay of 40 msec. Use
counter 0 in mode 0 and clock frequency connected to the CLK terminal is 2 MHz.

19. An LED is connected to SOD line of 8085. The should glow ON/OFF regularly
with an interval of 1 sec. The delay should be introduced by counter 2 of 8253 used
in mode 0. Consider clock frequency connected to the CLK terminal is 10 KHz.

20 Use 8253 in mode 3 as a square wave generator. Use count value as 10 H (BCD).
The counter 1 is to be used for this purpose.

21. Use counter 0 of 8253 to generate a square wave of 10 KHz and simultaneously
counter 1 as divide by N counter. (N = 10 H BCD). The clock frequency connected
to the CLK terminals is 1 MHz.

22. Use counter 0 of 8253 as a simple counter in mode 0. After certain delay, read the
counts when the counting is in progress.

23. The 8253 is interfaced with 8085 microprocessor as shown in figure 9.27. Specify
the port addresses of the three counters and control word register.

 Fig. 9.27

 (Ans.: 00 H for counter 0
 01 H for counter 1
 02 H for counter 2
 03 H for CWR)

24. Specify the control words for 8253:
 (i) to program counter 1 in mode 5 having a 16-bit count value in BCD;
 (ii) to count the counts on fly for the counter 1.

 (Ans.: (i) 7B H, (ii) 40 H)
25. Write a program to use counter 0 of 8253 in mode 0 for BCD operation with an

initial count value 364810, and counter 2 in mode 3 for binary operation with an
initial count value FF H.

 296

 (Ans.: Program MVI A, 31 H
 OUT 13 H

 MVI A, 96 H
 OUT 13 H

 MVI A, 48 H
 OUT 10 H

 MVI A, 36 H
 OUT 10 H

 MVI A, FF H
 OUT 12 H

 HLT)
26. Explain what will be the meaning of the following program for 8253;
 (i) MVI A, 94 H
 OUT 13 H
 MVI A, FF H
 OUT 12 H
 HLT

 (ii) MVI A, 38 H
 OUT 13 H
 MVI A, 04 H
 OUT 10 H
 MVI A, 02 H
 OUT 10 H
 HLT

(Ans.: (i) Counter 1 in mode 2 with binary counting,
(ii) Counter 0 in mode 4 with binary counting)

27. Write a program to use counter 0 of 8253 in mode 4 for BCD operation with an
initial count value 022410.

28. Write a program to use counter 1 of 8253 in mode 5 for Binary operation with an
initial count value 2AB610.

10
Programmable Keyboard and

Display Interface: 8279

 The entering of program or data in the microprocessor base systems is most
commonly done by a keyboard. Hence, keyboard is the most versatile input device. The
keyboards with hexadecimal or ASCII characters are basically a combination of switches
placed in a matrix with rows and columns. Similarly, display devices are to be connected
to the system to output the data or the result, and the most common output device is seven
segment display. The keyboard has to be constantly scanned to detect a key-press. The
display, however, has to be supplied with the data to hold it ready. If the CPU is required
to do all these operations itself, it will be heavily burdened and will have lesser time for
other processes. These operations are, therefore, carried out by another device so that
CPU is relieved from all these burdens. For this purpose, Intel 8279 keyboard/display
interface is designed to directly connect to 8085 microprocessor. It performs both
keyboard scan and output display operations repetitively and very short time of CPU is
utilized for the data transfer between the device and CPU. This chapter will entirely deal
with the details of this programmable keyboard and display device 8279.
10.1 INTEL PROGRAMMABLE KEYBOARD/DISPLAY INTERFAC E 8279
 Intel 8279 Programmable Key Board/Display Interface is available in the form of
40 pin IC in plastic dual in line package (DIP). It has been designed to interface the key
board (an input device) and display device (an output device) with microprocessor. The
8279 constantly scans to detect a key press and transmit the information of characteristics
of the key press to the CPU. It also displays or outputs the data received from CPU to the
display devices. These two operations keyboard scan and display are performed
repetitively and independently without utilizing the time of CPU except for relatively
short time when the data is actually transferred to and from the burden of scanning the
keyboard or refreshing the display repetitively.
 There are three input modes:
 Scanned keyboard mode

Scanned Sensor matrix mode
Strobed input mode.

 The keyboard can provide a scanned interface to 64 contact key matrix or array of
sensors or a srobed interface keyboard. Key depressions can be 2 key lock out or N-key
rollover. Keyboard entries are debounced and strobed in an 8-character FIFO (First In
First Out) and set the interrupt lines. If more than 8 characters are entered, overrun

 298

interrupt status is set. The display provides a scanned display interface for LED,
incandescent or other popular display technologies.
10.2 BLOCK DIAGRAM OF 8279
 The pin diagram, logic diagram and functional block diagram of this 40 pin 8279
IC are depicted in figures 10.1, 10.2 and 10.3 respectively.

Fig. 10.1

 The description of pins of 8279 Programmable keyboard/display interface is given
as follows:

DB0-DB7: These pins form the bidirectional 8-bit data bus. The commands
are also transmitted on this data bus.

CLK: It is a clock terminal to be connected to the external clock terminal
of the system clock. It is used to generate internal timing.
Maximum frequency to be used is 3 MHz.

CS: This is a chip select terminal. A low signal to this terminal enables
the chip for programming, reading the keyboard, etc.

 299

A0: It is buffer address pin. A low signal on this pin indicates data and
a high on this pin indicates the command.

Fig. 10.2

IRQ: It is an interrupt request output terminal. Interrupt request,
becomes 1 when a key is pressed, data is available.

SL0-SL3 : These four scan lines are used to scan the key switch or sensor
matrix and the display digits. Scan line outputs scan both the
keyboard and displays.

RL0-RL7: These are 8 Return line inputs which are connected to the scan
lines through the key or sensor switches. These lines have internal
pull-ups to keep high until a switch closure pulls one of the lines
low.

SHIFT: This is an input terminal used in the scanned matrix keyboard
modes. The SHIFT input status is stored along with the key
position on key closure. SHIFT connects to shift key on keyboard.

CNTL/STB: This is control and strobe line, connected to the control key on the
keyboard. It is high until a switch closure pulls it low.

 300

Fig. 10.3

 301

SHIFT: This is an input terminal used in the scanned matrix keyboard
modes. The SHIFT input status is stored along with the key
position on key closure.

RD: It is read input terminal and is connected to microprocessor's RD
signal. It reads data/status registers.

WR: It is write input terminal and is connected to microprocessor’s
write terminal.

OUT A0 –OUT A3 &
OUT B0-OUT B3: These are two 4-bit ports. The display output is through two 4-bit

ports (OUT A0 –OUT A3 and OUT B0-OUT B3). These two ports
can be combined to form an 8 bit port.

BD : This is a blanking display terminal, used to blank the display
during the digit switching or by a display blanking command.

10.3 FUNCTIONAL DESCRIPTION OF 8279
 The functional description of programmable keyboard and display interface 8279
will now be discussed with reference to figures 10.2 and 10.3. The 8279 has mainly been
divided into four sections:

� Keyboard Section
� Scan Section
� Display Section
� Microprocessor Interface Section

Keyboard Section
 The keyboard section includes Return buffer, keyboard debounce and control.
Return buffers are to buffer the 8-input lines (RL0-RL7). In the keyboard mode, these
lines are scanned, looking for the key closure in that row. If the debounce circuit detects a
closed switch, it waits about 10 msec to check whether the switch remains closed. If it
does, the address of the switch in the matrix in addition to other information is transferred
to the FIFO.
 The block FIFO/Sensor RAM and Status contains dual function 8 x 8 RAM. It
will act as a FIFO in keyboard or strobed input modes. Each new entry is written into
successive RAM positions and each is then read in the order of entry. FIFO status keeps
track of the number of characters in the FIFO and whether it is full or empty. Too many

reads or writes will be recognized as an error. The status can be read by RD and CS low
and A0 high. The status logic also provides an IRQ signal when the FIFO is not empty.
Scan Section
 The scan section has a scan counter and four scan lines SL0-SL7 which are used o
scan the key switch or sensor matrix and display digits. This counter can be operated in
two ways: Encoded mode and Decoded mode. In the encoded mode, the counter provides
a binary count which can be decoded to provide the scan lines for the keyboard or
display. However, in case of decoded mode, the scan counter itself is a decoder providing
1 of 4 scan.
Display Section
 This section contains the display address registers and display RAM. The display
address registers hold the address of the word currently being written or read by the CPU
and the two nibbles being displayed. The read/write addresses are programmed by CPU

 302

command. They can also be set to auto increment after each read or write. The display
RAM can be directly read by the CPU after the correct mode and address is set. These are
two 4-bit ports. The display output is through two 4-bit ports (OUT A0-OUT A3 and OUT
B0-OUT B3). These two ports can be combined to form an 8 bit port. The data from these
lines are synchronized to the scan lines (SL0-SL3) for the multiplexed digit displays. The

two ports may be blanked independently by the blanking display terminalBD . This
section also includes 16 x 8 display RAM and the processor can read from or write into
any of these registers.
Microprocessor Interface Section
 The microprocessor interface sections contains 8-bit bidirectional data lines (DB0-
DB7), one interrupt request line (IRQ), one address buffer line A0, and five lines

(RD,WR,CS, RESET, CLK) for interfacing. When a high signal appears on A0
terminal, the command or status registers inside the 8279 can be accessed i.e. it works as
command word or status. A low, however, on this line indicates that the data register, e.g.
display RAM or the FIFO/Sensor RAM can be accessed. The interrupt request line IRQ
becomes high whenever data entries are stored in the FIFO. This signal is used to
interrupt the microprocessor to indicate the availability of the data. The data and
commands are communicated between the microprocessor and the 8279 through the data
bus (DB0-DB7). The RESET pin resets the 8279, when a high signal appears on this pin.

The two signals RD and WR enable the data bus to either send data to external bus or
receive it from the external bus.
10.4 KEYBOARD SCAN
 As already discussed, the 8279 provides 4 scan lines (SL0-SL3) and 8 return lines
(RL0-RL7). The scan lines can be operated either in encoded mode or in decoded mode.
Encoded Mode:
 In this encoded mode, four scan lines (SL0-SL3) can be used to generate 16 lines
with the help of external decoder. Usually 3 to 8 line decoder is used with the scan lines.
The most significant scan line SL3 is not recommended to use in keyboard decoder. So
with three scan lines (SL0-SL2) and a 3 to 8 line decoder, 8 decoded scan lines are
generated. These 8 decoded scan lines in conjunction with the 8 return lines can form an
8 x 8 keyboard matrix as shown in figure 10.4. Two more extra lines SHIFT and CNTL
(control) can also provide four more different combinations as shown in table 10.1.

Table 10.1

SHIFT CNTL

 0 0

 0 1

 1 0

 1 1

 303

 Fig. 10.4
 With these four combinations and 8 x 8 matrix 4 x 8 x 8 = 256 character
definitions are possible.
Decoded Mode:

 In the decoded mode, an internal decoder is used to provide all the four scan lines
(SL0-SL3) as the decoded lines as shown in table 10.2.

 Table 10.2

SL3 SL2 SL1 SL0

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 These four decoded lines with 8 return lines form the keyboard matrix as shown
in figure 10.5. The SHIFT and CNTL lines in combination with the keyboard matrix can
provide 4 x 4 x 8 128 character definitions.

 304

Fig. 10.5

 The disadvantage of the decoded scan is that the number of combinations of the
scan lines as given in table is only four. Hence, only four rows can be used in case of
keyboard and only four digits can be used for the display.
10.5 SCANNED KEYBOARD
 In this mode, when a key is pressed, a unique 6 bit data is generated characteristic
of the key position. An 8-bit word is formed, with the 6-bit position data for the key
pressed and two bits for control (CNTL) and SHIFT lines. The format for the scanned
keyboard mode is shown in figure 10.6. The scan counter has three scan bits (D5-D3) as

 Fig. 10.6
000 to 111 for the row on which the pressed key is located. The column counter also has
three bits (D2-D0) as 000 to 111 for column on which the pressed key is located. Figure

 305

10.7 shows the 8 x 8 keyboard matrix that has the 8 return lines and 8 scan lines. It has 64
key positions (0 to 63) which generate 8 bit data word for the key pressed. The 8 bit data
word generated for a key pressed may be understood if we consider CNTL and SHIFT
lines are 00. Suppose a key number 15 is pressed. The row line corresponding to the key
number 15 is 1 (three bit binary is 001) and the column line for this pressed key is 7
(three bit binary is 111) so the 8 bit data formed for this pressed key becomes:
 00 001 111
which is the binary equivalent of 15 (0F H). Similarly, the 8 bit data word for the key
pressed 32 is 00 10 000 (20 H).

 Fig. 10.7
 The 8-bit data thus formed corresponding to the key pressed is stored in FIFO
(first in first out) RAM inside the 8279. As soon as the 8-bit word is stored in FIFO
RAM, IRQ terminal of 8279 goes high. This terminal is connected to one of the hardware
interrupt line of CPU. With the high IRQ, the interrupt line of the CPU will be activated
and the service subroutine program of the hardware interrupt will read the data from the
FIFO RAM. As the data is read from the FIFO RAM, the IRQ terminal goes low; and it
becomes high again if FIFO RAM contains further data.
 The scanned keyboard mode has further two alternative ways of operation:

• Two-key lockout

• N-key rollover

10.5.1 Two-key Lockout

 306

 The mechanical keys used in the keyboard have a problem. When a key is pressed
the contacts bounce back and forth and finally settle down after a small time. Due to this
contact bounce problem multiple entries may be made for the same key. This can be
avoided either by using the debouncing circuit using flip-flops etc. or by making the
device to wait for few milliseconds after the key is pressed. In the 8279, second method is
used for debouncing which is the built in feature of this IC.
 In the two-key lockout operation, if two keys are depressed within the bounce
cycle, it is called a simultaneous depression and neither key will be recognized until one
of the keys is released. The last key released will be recognized and its corresponding 8-
bit code will be entered in FIFO RAM.
 If after the first key is depressed, and no other key is found to be depressed within
next two scans, then it is taken as a single key depression and the code for the depressed
key will be entered in FIFO RAM.
 If after the first key depression, one or more additional key depression is detected
within the next two scans, then there will be following two possibilities:

If all keys are released before the first pressed key, then the first key data will be
entered in FIFO RAM.
 If first key pressed is released before others, then the press key will be entirely
ignored.
10.5.2 N-key Rollover
 In this mode, each key depression is treated independent. If simultaneous key
depression occurs then keys are recognized and entered in FIFO RAM according to the
order of the key pressed. In fact when a key is pressed the debounce circuit inside the
8279 waits for two scans then checks if this key is still pressed. If this key is still pressed,
the code for the key depressed is entered into FIFO RAM.
10.6 SCANNED SENSOR MATRIX
 As discussed earlier, the keyboard matrix size is 8 x 8 in encoded scan lines and 4
x 8 in decoded scan lines. In this mode, the keys are placed in the form of matrix either in
8 x 8 encoded scan lines or 4 x 8 decoded scan lines, the scan lines form the columns and
return lines form the rows of the keyboard matrix. The key status (open or closed) is
stored in RAM which can be addressed by the CPU. The data on each of the eight lines
enter directly in eight columns of sensor RAM; and each switch position maps to specific
sensor RAM positions. The SHIFT and CNTL lines are not considered as inputs. The
format for each row of the sensor RAM is shown in figure 10.8. The logic circuits can
also be connected to the return lines which will be triggered by the scan lines. The
debouncing circuit is not provided in this mode. It therefore has the advantage that the
CPU knows how long the sensor was closed. The IRQ line goes high if a sensor value is
found to have changed at the end of sensor matrix scan. The IRQ line is cleared by the
first data read operation if the auto increment flag is set to zero or by the End Interrupt
Command if the auto increment flag is set to one.

Fig. 10.8

 307

10.7 STROBED INPUT
 In this mode, the data is accepted from the return lines and go to FIFO RAM and
entered at the rising edge of CNTL/STB line pulse. The data placed on the return lines
can come from any source. The data is stored in the same format as shown in figure 10.8.
Each scan line would lead to an 8-bit word.
10.8 DISPLAY INTERFACE
 The interfacing of keyboard with the 8279 has been discussed in the preceding
sections. The interfacing of display devices with the 8279 will now be discussed.
Generally seven segment display devices are connected with 8279 using the multiplexing
technique. In the multiplexing technique the seven segment code is sent to all the displays
simultaneously, but the particular segment to be illuminated is only grounded (in case of
common cathode displays).

Fig. 10.9

 In the 8279, eight output terminals, OUT A0-A3 and OUT B0-B3 are provided for
the purpose of interfacing the seven segment displays. If a 4-to-16 line decoder is used
with the scan lines (SL0-SL3), then a maximum of 16 display devices may be connected
to the 8279. The internal FIFO RAM of 8279 can hold 8-bit data for 16 digits. If a 3-to-8

 308

line decoder is used with three scan lines (SL0-SL2), then a maximum of 8 displays may
be connected to this IC. All the segments of display devices are connected in parallel (i.e.
a’s segment of all the displays are tight together, similarly for b’s to g’s and dp’s
segments). These segments are then connected to the output terminals OUT A0-A3 and
OUT B0-B3, as shown in figure 10.9. The OUT A0, OUT A1, OUT A2 and OUT A3 lines
of the 8279 are connected to segments a, b, c and d respectively. The OUT B0, OUT B1,
OUT B2 and OUT B3 lines of the 8279 are connected to segments e, f, g and dp
respectively. The decoded outputs of scan lines provide 0 to 7 outputs in a periodic
fashion, to select one digit of the display devices at a time. The BD line is used to blank
all display digits.
 When a given bit is 1, the corresponding segment is switched ON. For example
the key code for the alphabet ‘C’ is obtained if the segments a, d, e and f are high. The
data code for the alphabet ‘C’ is 93 as shown in figure 9.10.

 Fig. 10.10
10.9 DISPLAY MODES

The interfacing of display devices with 8279 has been discussed in the earlier
section. Further there are following two options for the display formats in the display
modes of 8279:

• Left Entry Mode (Type Writer Mode)

• Right Entry Mode (Calculator Mode)

10.9.1 Left Entry Mode (Type Writer Mode)

In the left entry mode, the first location of the display RAM data is treated as the
segment for the left most digit and second location of the display is treated as the segment
data for the second digit from the left and so on. This is similar to typing the paper with

 309

the type writer. In this mode there is auto-increment facility as in the type writer; the

 Fig. 10.11
carriage advances one step during typing. The left entry mode with auto increment
facility is illustrated in figure 10.11 for 16 digits to be displayed on the display devices.
From this figure it is clear that the first entry goes to the address 0 (first one of sixteen)
for one word RAM and to the left most display position. The second entry goes to
address 1 and the second display position and so on. The 16th entry goes to the address 15
of the display RAM and position 16 of the display. The 17th entry fill the left most
position again.
 There is a command (the details of which will be discussed in the next section)
which allows entering data at an arbitrary address location of the display RAM. Figure
10.12 illustrates the result of a command that is used to display the next data to the 6th
position using 8-digit display. The command word given here is 10010110 which
contains 8 bits, the three most significant bits 100 represents the “write display RAM”:
the next bit 1 is for auto increment and the next four bits 0110 (6th) are for the position at
which it should start filling. This command does not lead to any undesirable result.

 310

 Fig. 10.12
10.9.2 Right Entry Mode (Calculator Mode)

The right entry mode is also known as calculator mode. In this mode the first
location of the display RAM indicates the display data for the right most digit. Therefore,
on the display, the data appears to start from the right and shift towards left as the digits
move left in the calculator when the data is entered in to it. Figure 10.13 shows how the
data are entered in this mode for 16 digits display with auto increment. The first character
appears at the right display position. When a second character enters, the first character
shifts towards the left by one place on the display. Similarly at the third entry, both the
characters move by one place left each and the third character again takes the original
right most position. It has been observed that a given character entered at a certain
display position continues to remain there; but in case of right entry mode at every new
entry each existing character moves one place to the left and finally the left most
character shifts off the end, and is lost.

 311

Fig. 10.13

Figure 10.14 shows the entering of the data in right entry mode with auto
increment for 8 digit display using the command word for entering data at an arbitrary
address location of the display RAM. The results obtained for entering data at an
arbitrary address location in this mode are unexpected. Therefore, a starting display RAM
address 0 and sequential entry are recommended in this right entry mode.

 312

 Fig. 10.14

10.10 PROGRAMMING OF 8279
 The 8279 is a programmable keyboard and display interface device so it may be
programmed for the desired operation. There are following 8 commands that can be used
in the 8279:

� Keyboard/Display Mode Set

� Program Clock

� Read FIFO/Sensor RAM

� Read Display RAM

� Write Display RAM

� Display Write Inhibit/Blanking

� Clear

� End Interrupt/Error Mode Set

The command word, whose format is shown in figure 10.15, is sent on the data

bus with CS low and A0 high. The word is loaded to the 8279 using the write operation.

 313

Fig.10.15
 In this command word format, the three most significant bits selects the various
operations which are given as:

 D7 D6 D5 Function

 0 0 0 Keyboard/Display Mode Set

 0 0 1 Program Clock

 0 1 0 Read FIFO/Sensor RAM

 0 1 1 Read Display RAM

 1 0 0 Write Display RAM

 1 0 1 Display Write Inhibit/Blanking

 1 1 0 Clear

 1 1 1 End Interrupt/Error Mode Set

10.10.1 Keybaord/Display Mode Set

This command sets up the operation of keyboard and display mode. The

command bit pattern for the same is given as (figure 10.16):

 Fig. 10.16
D D represents the display mode and K K K represents the keyboard mode.

D D in D4 D3 bit positions has the following four display mode options:

 D4 D3 Display Option

 0 0 Eight 8-bit character display with left entry

 0 1 Sixteen 8-bit character display with left entry

 1 0 Eight 8-bit character display with right entry

 1 1 Sixteen 8-bit character display with right entry

 314

K K K in D2 D1 D0 bit positions has the following four display mode options:

 D2 D1 D0 Keyboard Option

 0 0 0 Encoded Scan Keyboard with 2-key lockout

 0 0 1 Decoded Scan Keyboard with 2-key lockout

 0 1 0 Encoded Scan Keyboard with N-key roll over

 0 1 1 Decoded Scan Keyboard with N-key roll over

 1 0 0 Encoded Scan Sensor Matrix

 1 0 1 Decoded Scan Sensor Matrix

 1 1 0 Strobed Input Encoded Display Scan

 1 1 1 Strobed Input Decoded Display Scan

 The command word to set decoded scan keyboard with 2-key lockout and to have
eight 8-bit characters with right entry in the display mode can be shown as:

Fig. 10.17

 If the address of the command port for 8279 is FF H, then by executing the
following instructions, keyboard and display mode will be set as per the requirement
discussed above:

 MVI A, 11 H
 OUT FF H

10.10.2 Program Clock

The different keys of the keyboard are scanned one by one in a sequence to detect
a key press by the 8279; and also key debouncing is implemented by this device. All
these functions require the timing signal. The 8279, therefore, needs an internal clock.
The frequency of this clock should be around 100 KHz. But the clock of the system (i.e.
the frequency of the external clock terminal of 8085) is 3 MHz. This system clock or any
other external clock signal of known frequency may be applied to the CLK terminal (pin
no. 3) of 8279. The 8279 internally provides an arrangement so that the clock applied at
the pin no. 3 may be divided by a known factor to get the clock frequency of about 100
KHz. The frequency division is possible by the software.

 Fig. 10.18

 315

A command word is generated to get the required clock frequency after division
of the system clock or external clock connected to pin no. 3 of 8279. The command word
format is given in figure 10.18.

The five bits (D0 to D4) of the command word define the scale factor. These five
bits P P P P P may be set 0 0 0 0 0 to 1 1 1 1 1 whose decimal equivalents are 0 to 31. So
the scale factor may be chosen up to 31.

The scale factor will be given by:

 Scale Factor =
KHz100

frequencySystem−

If the external clock frequency applied to pin 3 of 8279 is 2 MHz, then the scale
factor will be:

 Scale Factor =
KHz100

MHz2

 = 20
The binary equivalent of 20 in five bits is 1 0 1 0 0 (represent P P P P P) and the

command word will be given by (figure 10.19):

Fig. 10.19

Similarly, if the system clock frequency of 3 MHz is applied to 8279, then the
scale factor is given by:

 Scale Factor =
KHz100

MHz3

 = 30
The binary equivalent of 30 is 1 1 1 1 0 and the command word will be given by

(figure 10.20):

Fig. 10.20

 The following instructions after execution will set the program clock to 100 KHz,
if the system clock frequency of 3 MHz is applied to 8279. The command for this is 3E H
as discussed above.
 MVI A, 3E H
 OUT FF H
 The address of the command port for 8279 is assumed as FF H.

10.10.3 Read FIFO/Sensor RAM

The command word for setting up the 8279 to read FIFO/sensor RAM is shown in
figure 10.21.

 316

 Fig. 10.21

The bits D7 D6 D5 represent for command word 2 (0 1 0).

AI represents Auto Increment.

X is don’t care.

A A A (D2 D1 D0) represent RAM address bits.

 In the sensor matrix mode, the address bits A A A represent on the 8 rows of the
sensor RAM. If AI is set to 1, the successive Read operation is performed from the
subsequent row of the sensor RAM. In the keyboard mode, auto increment bit AI and
address bits A A A are irrelevant and the 8279 will automatically drive the data for each
subsequent read (A0 = 0) in the same sequence in which the data first entered in FIFO
RAM.

 If the data is to be read from the 3rd row of the sensor RAM, then the command
word will be as:

 Fig. 10.22

10.10.4 Read Display RAM

The command word for setting up the 8279 to read display RAM is shown in
figure 10.23.

 Fig. 10.23

The bits D7 D6 D5 represent for command word 3 (0 1 1).

AI represents Auto Increment.

A A A A (D3 D2 D1 D0) select one of the 16 rows of display RAM that is to be read.

 If the auto increment bit AI is set to 1, then the row address will automatically be
incremented after each of the Read to display RAM. The command word 0 1 1 1 0 0 0 0
(= 70 H) represents a read from the display RAM.

10.10.5 Write Display RAM

 317

To display information, the seven segment data is to be written in the internal
display buffer. To enable writing seven segment data into display buffer, the write
display RAM command has to be written into the command word register. The command
word for the same is shown in figure 10.24.

 Fig. 10.24

The bits D7 D6 D5 represent for command word 4 (1 0 0).

AI represents Auto Increment.

A A A A (D3 D2 D1 D0) is the address of the digit that the CPU writes into the
buffer. Four bit address is provided to select any one of the
digits.

After the write command with A0 = 1, all the subsequent writes with A0 = 0 will
be to the display RAM
 For example, to write the segment codes 63 H and B5 H in the first and second
locations of the display RAM, the command will be given as:

Fig. 10.25

 The following instructions will write the segment codes 63 H and B5 H in the first
and second locations of the display RAM:

 MVI A, 90 H

 OUT FF H

 MVI A, 63 H

 OUT FE H

 MVI A, B5 H

 OUT FE H

 The first two instructions MVI A, 90 H and OUT FF H writes the command word
in the command word register (FF H is the address of the command word register with A0
is 1). The next two instructions MVI A, 63 H and OUT FE H writes the segment code 63
H in the first location of the display RAM (OUT FE H is the address for the same with A0
= 0); and the last two instructions MVI A, B5 H and OUT FE H writes the segment data
B5 H in the next location of display RAM as the in the command word auto increment AI
bit is set to 1.

 318

10.10.6 Display Write Inhibit/Blanking
The control word for Display Write Inhibit/Blanking is shown in figure 10.26.

Fig. 10.26

The bits D7 D6 D5 represent for command word 5 (1 0 1).

X represents don’t care may be taken as 0.

IW Inhibit Write Flag.

BL Blank Display Flag.

The display write inhibit control word inhibits writing to either left most 4 bits of
the display or right most 4 bits. By setting D3 (IW) bit to 1, the left most significant 4 bits
of the display will be masked or inhibited and similarly, by setting D2 (IW) bit to 1, the
right most significant 4 bits will be masked or inhibited.

Similarly, the blank flag (BL) blanks half of the output pins. By setting D1 (BL)
bit to 1, the left most significant 4 bits will be blanked (or turned off); and by setting D0
(BL) bit to w, the right most significant 4 bits will be blanked.

10.10.7 Clear

The command word to clear the display, FIFO or both is shown in figure 10.27.

Fig. 10.27

The bits D7 D6 D5 represent for command word 6 (1 1 0).

CA Clears All (it clears both display RAM and FIFO).

CF Clears FIFO Status and resets the IRQ line.

CD CD CD Clears all rows of the display RAM to a selectable blanking code.

 The selectable blanking code CD CD CD is defined as follows:
 CD CD CD

 0 X All display RAM locations become
00000000 (all zeros).

0 0 AB becomes 00100000 (20 H).
1 1 All ones 11111111 (FF H).
 Enables clear display when 1.

 319

 If CF bit is set to 1, it clears FIFO and the display RAM status, and sets address
pointer to 000; it also resets the IRQ lne.
 The bit CA has the combined effect of CD and CF; if it is set to 1 it clears the
display RAM and also clears FIFO status.

10.10.8 End Interrupt/Error Mode Set

The command word to end interrupt/error mode set is shown in figure 10.28.

Fig. 10.28

The bits D7 D6 D5 represent for command word 6 (1 1 0).

The bit D4 represents Error (E) which may be programmed to set the error
mode or clear the IRQ line.

The bits D3 - D0 are represented by X, means don’t care and these may be
considered as 0s.

 For the sensor matrix mode this command lowers the IRQ line and enables
writing into RAM.
 For the N-key rollover if the bit E is programmed to 1 the chip will be operated in
the special error mode.
10.11 STATUS REGISTER (IN OPERATION)

The status word gives the information about how many characters are in the FIFO

RAM and whether an error has occurred. The status word can be read by the CPU when
A0 = 1 or in other words we can say that the status word can be read by the command
register (IN FF H in the present case if FF H is the address of the command register).

 Fig. 10.29

The bit D7 represents DU - Display Unavailable.

The bit D6 represents S/E - Sensor Closure/Error Flag for multiple closure.

The bit D5 represents O- Over-run error.
The bit D4 represents U- Under-run error.
The bit D3 represents F- FIFO Full.
The bits D2 to D0 represent NNN as the number of key codes in FIFO RAM.
 In this status word the first three bits D2 to D0 labeled as NNN identify the
number of key codes or characters that are currently present in the FIFO.

 320

 The next bit F (D3) indicates whether FIFO is Full or Empty. If F = 1, then it
means FIFO is full. The FIFO is empty is F = 0.
 The next two bits U and O (D4 and D5) are related to the under-run or over-run
errors. Over-run error indicates that an attempt was made to enter the key code or
character in FIFO RAM when it was already full. The other error under-run means the
processor attempted to read the FIFO when it was empty.
 In the special error mode, the bit S/E (D6) is showing that an error flag gives an
indication whether a simultaneous multiple closure error has occurred.
 The most significant bit DU (D7) of the status word stands for display unavailable.
When the clear display command is send, the 8279 clears the display and clearing
requires some very small time. In this duration the display is unavailable and the data can
not be read or written in display RAM. The bit DU is 1 when clearing is going on and it is
automatically reset when display RAM becomes available again for writing.
Read Operation
 To read FIFO RAM for the keyboard data following steps are carried out:

Step I Send Keyboard/display command word to command register. Say:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 0 0 0 0 0 0 = 00 H

 Eight 8-bit Encoded scan keyboard
 Character - 2 Key lockout.
 display
 - left entry.

Step II A read FIFO RAM command is written into the command register as:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 1 0 AI X A A A
 0 1 0 0 0 0 0 0 = 40 H
 (AI and A A A are irrelevant in sensor matrix mode).

Step III Read the status word by using IN instruction and port address is for A0= 0.
Further, status word is checked, if D0 bit is 1. If it is 1, which indicates one
character or key code is available in the first location of FIFO RAM.

Step IV Read FIFO RAM command word is entered into the command register.

Step V Now the key data can be read from the data register with A0 = 0.

 Using these steps program may be written as given below:

Program:
Label Mnemonics Operand Comments

 MVI A, 00 H ; Encoded scan, 2 key lockout mode.
 OUT FF H ; Keyboard display code is written in

command register.
LOOP IN FF H ; Read the status word.
 ANI 01 H ; Check if D0 is 1.

 321

 JZ LOOP ; If D0 = 0 then read the status word
again till D0 is 1.

 MVI A, 40 H ; Load FIFO RAM command word
 OUT FF H ; in command word register.
 IN FE H ; Read the data register to take the

key code.
10.12 INTERFACING OF 8279 WITH 8085

 Since the 8279 is an I/O device, so it can be used as memory mapped I/O device
or I/O mapped I/O device. The interfacing of this IC with 8085 microprocessor is shown
in figure 10.29.

 Fig. 10.29

The description of the connections of this IC with 8085 microprocessor is given
below:

• The 8 data lines (DB0-DB7) are connected to the data bus of the microprocessor.

 322

• The RESET signal of 8279 is connected to the RESET OUT terminal of the CPU.

• The active low terminals RD and WRof 8279 are connected to active low

terminals IOR and IOW of the CPU.

• The CLK signal of this IC may be connected to either an external clock signal or
the CLK OUT terminal of the processor.

• The buffer address terminal A0 of 8279 is connected to the A8 terminal of the
address bus of the microprocessor. A low signal on this pin indicates data word
and a high on this pin indicates the command word.

• The output of the address decoder circuit is connected to active low terminal CS
of the IC 8279. The A9-A15 terminals of the address bus of the microprocessor are
connected to the inputs of the decoder circuit. These connections show that FF H
is the address of the command register and FE H is the address of the data
register.

• The Scan lines SL0-SL2 of the 8279 are connected to a 3 to 8 line decoder, the
outputs of which are connected to the 8 x 8 keyboard matrix. The eight return
lines RL0-RL7 along with the CNTL (control) and SHIFT terminals are also
connected with the keyboard matrix.

• The sixteen 7-segment LED displays are also connected to this IC 8279 through
the OUT A0-A3 and OUT B0-B3 terminals. The common terminals of the digit
display are connected to the Scan lines SL0-SL3 through 4-to-16 line decoder.

Example 10.1. A 4 x 4 keyboard matrix is to be interfaced with 8085 microprocessor
using 8279. Give the necessary hardware for the same. Also give the software to enter the
hex code of the key pressed and store this code to memory location 2500 H.
 Given frequency of the clock connected to the CLK terminal of 8279 is 2.5 MHz.
Assume Decoded scan mode with N-key-roll over. Let control port address is 81 H and
data port address is 80 H.
Solution. The hardware needed to interface 4 x 4 keyboard matrix with 8085
microprocessor is given in figure 10.30.
 The initialization steps for providing the software are given below:

1. Send Keyboard/display command word to command register. Say:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 0 0 0 0 1 1 = 03 H

 Eight 8-bit decoded scan keyboard
 Character - N Key rollover.
 display
 - left entry.

 323

 Fig. 10.30
2. The frequency of the clock is to be set around 100 KHz from 2.5 MHz. This

frequency is to be divided by 25 generating the program clock word as:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 1 P P P P P
 0 0 1 1 1 0 0 1 = 39 H
 11001 for PPPPP is 25.
3. Generate clear command word as:
 D7 D6 D5 D4 D3 D2 D1 D0

 1 1 0 0 0 0 1 1 = C3 H

 324

 It will clear all.

4. A read FIFO RAM command is written into the command register as:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 1 0 AI X A A A
 0 1 0 0 0 0 0 0 = 40 H
 (AI and A A A are irrelevant in sensor matrix mode).

5. Check the status word if the key is pressed.

 The program for the same is written as:
Program:
Label Mnemonics 0perand Comments

MVI A, 03 H ; Decoded scan, N key roll-over
mode.

OUT 81 H ; Keyboard display code is written in
command register.

 MVI A, 39 H ; Program clock
 OUT 81 H ; is set to 100 KHz.
 MVI A, C3 H ; Clear FIFO.
 OUT 81 H ; Clear command word is loaded to

command register.
LOOP IN 81 H ; Read the status word.
 ANI 07 H ; Check if key pressed.
 JZ LOOP ; If not then read the status word

again till the key is pressed.
 MVI A, 40 H ; Load FIFO RAM command word
 OUT 81 H ; in command word register.
 IN 80 H ; Read the data register to take the

key code.
 STA 2500 H ; Store the Hex code for the key

pressed in memory location 2500
H.

 HLT ; Stop processing.

Example 10.2. An 8279 is to be initialized with the following requirements:
 Keyboard encoded scan mode with N key rollover.
 External clock frequency is 2 MHz.
 Control port address is FF H and
 Data port address is FE H.
The IRQ line of the 8279 is connected to the RST 7.5 interrupt of 8085A. Write an
interrupt service routine to store the hex code of the key pressed in 2501 memory
location.

Solution. The initialization steps for providing the software are given below:

1. Send Keyboard/display command word to command register. Say:

 325

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 0 0 0 0 1 0 = 02 H

 Eight 8-bit encoded scan keyboard
 Character - N Key rollover.
 display
 - left entry.
2. The frequency of the clock is to be set around 100 KHz from 2 MHz. This

frequency is to be divided by 20 generating the program clock word as:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 1 P P P P P
 0 0 1 1 0 1 0 0 = 34 H
 10100 for PPPPP is 20.
4. Generate clear command word as:
 D7 D6 D5 D4 D3 D2 D1 D0

 1 1 0 0 0 0 1 1 = C3 H
 It will clear all.

4. A read FIFO RAM command is written into the command register as:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 1 0 AI X A A A
 0 1 0 0 0 0 0 0 = 40 H
 (AI and A A A are irrelevant in sensor matrix mode).

5. Check the status word if the key is pressed.

Program:
Label Mnemonics Operand Comments

MVI A, 02 H ; Encoded scan, N key roll-over
mode.

OUT FF H ; Keyboard display code is written in
command register.

 MVI A, 34 H ; Program clock
 OUT FF H ; is set to 100 KHz.
 MVI A, C3 H ; Clear FIFO.
 OUT FF H ; Clear command word is loaded to

command register.
 EI ; Enable interrupts.
 MVI A, 0B H ; Enable RST 7.5.
 SIM ; Set interrupt mask.

 In this case when key code is available in FIFO RAM the IRQ line becomes high
and enables RST 7.5 interrupt. The program will jump to the vector location 003C H of
this interrupt, from where it jump to the service routine.
 003C H JMP ISR ; Jump to service routine.

 326

 ISR MVI A, 40 H ; Load FIFO RAM command word
 OUT FF H ; in command word register.
 IN FE H ; Read the data register to take the

key code.
 STA 2501 H ; Store the Hex code for the key

pressed in memory location 2500
H.

 RET ; Return
Example 10.3. An 8279 keyboard/display interface is used to drive eight 7-segmnet
display in multiplexed mode. Write a program to initialize 8279 to display a message
‘HELLO 07’.
 External clock frequency is 1.5 MHz.
 Control port address is 19 H and
 Data port address is 18 H.
Solution. The initialization steps for providing the software are given below:

1. Send Keyboard/display command word to command register. Say:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 0 0 0 0 0 0 = 00 H

 Eight 8-bit
 Character
 display
 - left entry.
2. The frequency of the clock is to be set around 100 KHz from 1.5 MHz. This

frequency is to be divided by 15 generating the program clock word as:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 1 P P P P P
 0 0 1 0 1 1 1 1 = 2F H
 01111 for PPPPP is 15.
3. Generate clear command word as:
 D7 D6 D5 D4 D3 D2 D1 D0

 1 1 0 1 0 0 1 1 = D3 H
 It will clear all.

4. Display RAM command is written into the command register as:

 D7 D6 D5 D4 D3 D2 D1 D0

 1 0 0 AI A A A A
 1 0 0 1 0 0 0 0 = 90 H
 (AI =1 for auto increment and 0000 for A A A A as address bits).
Program:
Label Mnemonics Operand Comments

MVI A, 00 H ; 8 bit character display mode.
OUT 19 H ; Keyboard display code is written in

command register.

 327

 MVI A, 2F H ; Program clock
 OUT 19 H ; is set to 100 KHz.
 MVI A, D3 H ; Clear FIFO.
 OUT 19 H ; Clear command word is loaded to

command register.
UP IN 19 H ; Read the status word.
 ANI 80 H ; Check if display available.
 JNZ UP ; If not available, read again.
 LXI H, 2100 H ; Point to the data in address

location.
 MVI C, 08 ; C is used counter for eight

characters of ‘HELLO 07’.
 MVI A, 90 H ; Write display command
 OUT 19 H ; The command word is loaded in

command register.
REP MOV A, M ; Write the segment code in
 OUT 18 H ; display RAM.
 INX H ; Increment H-L pair to point the

next code.
 DCR C ; Decrement C.
 JNZ REP ; If C is not zero jump to REP.
 HLT ; Stop processing.

Enter hex codes for HELLO 07 in the memory locations starting at 2100 H.

 Location Hex code for
 2100 H H
 2101 H E
 2102 H L
 2103 H L
 2104 H O
 2105 H - (Blank)
 2106 H 0
 2107 H 7

Example 10.4. An 8 X 8 keyboard matrix (64 keys) and 8 common cathode seven
segment displays are interfaced with 8085 through 8279. Write a program to initialize
8279 to display a message ‘DISPLAY’ on pressing key “0”.
 External clock frequency is 2.0 MHz.
 Control port address is 05 H and
 Data port address is 04 H.

Solution. The initialization steps for providing the software are given below:

1. Send Keyboard/display command word to command register. Say:

 328

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 0 0 0 0 0 0 = 00 H

 Eight 8-bit
 Character
 display
 - left entry.
2. The frequency of the clock is to be set around 100 KHz from 2.0 MHz. This

frequency is to be divided by 20 generating the program clock word as:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 1 P P P P P
 0 0 1 1 0 1 0 0 = 34 H
 10100 for PPPPP is 20.
3. Generate clear command word as:
 D7 D6 D5 D4 D3 D2 D1 D0

 1 1 0 1 0 0 1 1 = D3 H
 It will clear all.

4. Display RAM command is written into the command register as:

 D7 D6 D5 D4 D3 D2 D1 D0

 1 0 0 AI A A A A
 1 0 0 1 0 0 0 0 = 90 H
 (AI =1 for auto increment and 0000 for A A A A as address bits).
Program:
Label Mnemonics Operand Comments

MVI A, 00 H ; 8 bit character display mode.
OUT 05 H ; Keyboard display code is written in

command register.
 MVI A, 34 H ; Program clock
 OUT 05 H ; is set to 100 KHz.
 MVI A, D3 H ; Clear FIFO.
 OUT 05 H ; Clear command word is loaded to

command register.
UP IN 05 H ; Read the status word.
 ANI 80 H ; Check if display available.
 JNZ UP ; If not available, read again.
UP1 IN 05 ; Read the status word again if the

“0” is pressed.
 ANI 07 H ; Check for 0.
 JZ UP1 ; If zero, key “0” is not pressed

repeat.
 MVI A, 40 H ; Load FIFO command word
 OUT 05 H ; in command word register.
REP IN 04 H ; Read the data register to take the

key code.

 329

 CPI 00 H ; Key “0” is pressed or not.
 JNZ REP ; If not repeat.
 LXI H, 2100 H ; Point to the data in address

location.
 MVI C, 07 ; C is used counter for eight

characters of ‘DISPLAY’.
 MVI A, 90 H ; Write display command
 OUT 05 H ; The command word is loaded in

command register.
LOOP MOV A, M ; Write the segment code in
 OUT 04 H ; display RAM.
 INX H ; Increment H-L pair to point the

next code.
 DCR C ; Decrement C.
 JNZ LOOP ; If C is not zero jump to REP.
 HLT ; Stop processing.

Enter hex codes for DISPLAY in the memory locations starting at 2100 H.

 Location Hex code for
 2100 H D
 2101 H I
 2102 H S
 2103 H P
 2104 H L
 2105 H A
 2106 H Y

Example 10.5. An 8279 keyboard/display interface is used to drive sixteen 7-segmnet
display in multiplexed mode. Write a program to initialize 8279 to display a blinking
message “CONGRATULATIONS”.
 External clock frequency is 1.5 MHz.
 Control port address is 19 H and
 Data port address is 18 H.
Solution. The initialization steps for providing the software are given below:

1. Send Keyboard/display command word to command register. Say:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 0 0 1 0 0 0 = 08 H

 Sixteen 8-bit
 Character
 display
 - left entry.
2. The frequency of the clock is to be set around 100 KHz from 1.5 MHz. This

frequency is to be divided by 15 generating the program clock word as:

 330

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 1 P P P P P
 0 0 1 0 1 1 1 1 = 2F H
 01111 for PPPPP is 15.
3. Generate clear command word as:
 D7 D6 D5 D4 D3 D2 D1 D0

 1 1 0 1 0 0 1 1 = D3 H
 It will clear all.

4. Display RAM command is written into the command register as:

 D7 D6 D5 D4 D3 D2 D1 D0

 1 0 0 AI A A A A
 1 0 0 1 0 0 0 0 = 90 H
 (AI =1 for auto increment and 0000 for A A A A as address bits).
Program:
Label Mnemonics Operand Comments

MVI A, 08 H ; 8 bit character display mode.
OUT 19 H ; Keyboard display code is written in

command register.
 MVI A, 2F H ; Program clock
 OUT 19 H ; is set to 100 KHz.
 MVI A, D3 H ; Clear FIFO.
 OUT 19 H ; Clear command word is loaded to

command register.
UP IN 19 H ; Read the status word.
 ANI 80 H ; Check if display available.
 JNZ UP ; If not available, read again.
LOOP LXI H, 2100 H ; Point to the data in address

location.
 MVI C, 0F ; C is used counter for 15 characters

of ‘CONGRATULATIONS’.
 MVI A, 90 H ; Write display command
 OUT 19 H ; The command word is loaded in

command register.
REP MOV A, M ; Write the segment code in
 OUT 18 H ; display RAM.
 INX H ; Increment H-L pair to point the

next code.
 DCR C ; Decrement C.
 JNZ REP ; If C is not zero jump to REP.
 CALL DELAY ; Introduce some delay using a

Delay subroutine.
 CALL CLEAR ; A subroutine to clear the display is

used.
 CALL DELAY ; Delay is introduce so that display

is clear for some time.
 JUMP LOOP ; Jump to repeat the display.

 331

 HLT ; Stop processing.

Enter hex codes for “CONGRATULATIONS” in the memory locations starting at 2100

H.
 Location Hex code for
 2100 H C
 2101 H O
 2102 H N
 2103 H G
 2104 H R
 2105 H A
 2106 H T
 2107 H U
 2108 H L
 2109 H A
 210A H T
 210B H I
 210C H O
 210D H N
 210E H S

PROBLEMS

1. Draw the function block diagram of Programmable Keyboard/Display interface
8279 and also discuss the function of each block.

2. Discuss three input modes of Keyboard scan of 8279.
3. Describe Scanned keyboard mode of 8279 with 2-key lockout and N-key rollover.
4. Discuss Scanned sensor matrix mode for 8279.
5. Discuss encoded mode of Keyboard scan of 8279.
6. Discuss decoded mode of Keyboard scan of 8279.
7. Describe left entry mode for display of 8279.
8. Name 8 command words of 8279 and discuss the command word format for the

program clock.
9. Discuss the command word format for Read display RAM.
10. Discuss the command word format for keyboard/display mode set.
11. Discuss the command word format for Read FIFO/Sensor RAM.
12. Discuss the command word format for Display write Inhibit/blanking.
13. Discuss the command word format for End Interrupt/Error mode set.
14. Explain status register of 8279. How the status word can be read.
15. Discuss how 8279 can be interfaced with 8085A.
16. Mention various steps to be carried out for the initialization of 8279 with

following specifications:
 Keyboard encoded scan mode with N key rollover.
 External clock frequency is 2 MHz.
 Control port address is 11 H and
 Data port address is 10 H.

 332

17. An 8279 keyboard/display interface is used to drive sixteen 7-segmnet display in
multiplexed mode. Write a program to initialize 8279 to display a blinking message
“HAPPY BIRTH DAY”.

 External clock frequency is 2.0 MHz.
 Control port address is 05 H and
 Data port address is 04 H.
18. An 8 x 8 keyboard matrix (64 keys) and 8 common cathode seven segment

displays are interfaced with 8085 through 8279. Write a program to initialize 8279
to display a message ‘PLEASE” on pressing key “0”.

 External clock frequency is 2.5 MHz.
 Control port address is FF H and
 Data port address is FE H.
19. An 8279 keyboard/display interface is used to drive sixteen 7-segmnet display in

multiplexed mode. Write a program to initialize 8279 to display a message ‘BEST
WISHES’.

 External clock frequency is 2.5 MHz.
 Control port address is 01 H and
 Data port address is 00 H.
20. An 8 x 8 keyboard matrix is to be interfaced with 8085 microprocessor using 8279.

Give the necessary hardware for the same. Also give the software to enter the hex
code of the key pressed and store this code to memory location 2500 H.
Given frequency of the clock connected to the CLK terminal of 8279 is 2.5 MHz.
Assume Decoded scan mode with N-key-roll over. Let control port address is 19 H
and data port address is 18 H.

11
Programmable Interrupt

Controller: 8259

This chapter will confine to the detailed discussion on Programmable Interrupt

Controller (PIC) – 8259. This device is also called priority interrupt controller. It is
designed to work with Intel 8080A, 8085A, 8086 and 8088 microprocessors. It works as
an overall manager in an interrupt driven system environment. This device can handle 8
external interrupts and the starting address of the interrupts service routine can be
vectored to any location in the memory map unlike the software and hardware interrupts
which point to the predetermined starting address. The 8259 can be set to accept level
triggered or edge triggered interrupts. The interrupt can be expanded to 64 interrupt
inputs by cascading many 8259 device.

11.1 PROGRAMMABLE INTERRUPT CONTROLLER 8259
 It n an earlier chapter it has been discussed that the 8085A has four hardware
interrupt terminals namely TRAP, RST 5.5, RST 6.5 and RST 7.5. When the I/O device
sends an interrupt signal to the CPU, the CPU completes the current instruction and
branches to the service routine of the interrupt. After the execution of the ISR, it returns
to the main program. In addition to these inputs, the CPU can also be interrupted through
its INTR input. When an interrupt input signal INTR is send to the microprocessor, the

CPU then send an interrupt acknowledge signal INTA to the external device. In response
to this acknowledge signal the op code of the CALL instruction is placed on the data bus.

The CPU reads the op code and sends another INTA signal. This signal is used to place
the low order eight bits address of the CALL instruction on to the data bus. After reading

the low order address the CPU sends another INTA signal. It then places the high order
eight bit address on to the data bus. The CPU then reads and executes the interrupt
service routine available in that CALL address. The number of I/O devices that may be
used in an interrupt driven environment may be made greater than four if an external
device is used. The external device should be capable of accepting interrupt requests and
generating unique CALL instructions for the different interrupt inputs. This device will
be used to interrupt the microprocessor on the INTR line. A programmable interrupt
controller (PIC) is such a device (ref. figure 11.1) which accepts interrupt requests from a
number of I/O devices, resolves the priority of servicing the requests, and issues an
interrupt on the INTR input of the 8085A as discussed above.

 334

Fig. 11.1

11.2 BLOCK DIAGRAM OF 8259
 The 8259 is a programmable interrupt controller which uses NMOS technology. It
is available in 28 pin plastic dual in line package (DIP). It requires one power supply of
+5 V but does not require any internal or external clock. A single PIC can accept
interrupt requests from eight I/O devices, resolve priority among them and communicate
to the microprocessor. Interrupt requests from all the I/O devices can individually be
masked and a suitable priority mode can be selected by programming. Built in
expandability has also been provided to cascade 9 such Programmable Interrupt
Controller devices (8259s) to serve up to 64 I/O devices. Figure 11.2 shows the pin
diagram of this IC.
 The description of the pins of 8259 programmable interrupt controller is given as:

Pin No. 1: This pin is chip select terminal (CS). It is active low. When a low
signal is applied to this terminal, the device is chosen to work.

 335

Pin No. 2: This is write input terminal (WR), which is also active low. A low
to this input enables the CPU to write Initialization Control Word
(ICW) and Operation Command Word (OCW) to the 8259A.

Fig. 11.2

Pin No. 3: This is read input terminal (RD). A low to this pin enables the
8259A to send the status of the Interrupt Request Register (IRR),
In Service Register (ISR), the Interrupt Mask Register (IMR) or
the BCD of the interrupt level on the data bus.

Pin Nos. 4-11: These pins (D0 to D7) form the bidirectional data bus to be
connected to the data bus of the system.

Pin Nos. 12, 13 These pins (CS0 to CS2) are known as cascade lines. These lines
&15: are used to cascade a number of 8259A.

Pin No. 14: This is a common ground terminal to be connected to the common
terminal of the system or the supply.

Pin No. 16: This is slave program/enable buffer (ENSP/). As already
discussed more than one 8259A can be used with the system to
expand the priority interrupt schemes up to 64 levels. In such cases
one 8259A acts as the master and the others act as slaves. A high
on this pin designates the 8259A as the master and a low to this pin
designates as slave.

 336

Pin No. 17: This is an interrupt output terminal (INT) to be directly connected
to the interrupt terminal (INTR) of the CPU. When an interrupt
signals is applied to the any of the interrupt request terminals of the
8259, an INT signal is generated for the CPU.

Pin Nos. 18 to 25: These are 8 interrupt request inputs (IR0 to IR7).

Pin No. 26: This is an interrupt acknowledge input signal (INTA), connected

to the INTA terminal of the CPU. A low acknowledgement signal
is sent by the CPU to the 8259, whenever CPU receives an
interrupt signal.

Pin No.27: This pin A0 is the input signal used in conjunction with the signals

WR and RD to write the commands into the various status
registers of the device. This terminal can directly be connected to
one of the address lines.

Pin No. 28: This is supply pin (+VCC) connected to the positive 5 volts.

 Fig. 11.3

 337

 Figure 11.3 shows the internal block diagram of the 8259A. The 8259A contains
the following four sections:

1. Interrupt and Control Logic Section

2. Data Bus Buffer

3. Read/Write Control Logic Section

4. Cascade Buffer/Comparator Section
1. Interrupt and Control Logic Section
 This section contains the following five sections:

• Interrupt Request Register (IRR)

• In-Service Register (ISR)

• Priority Resolver

• Interrupt Mask Register (IMR)

• Control Logic Section

Interrupt Request Register (IRR)

 The interrupt request register (IRR) is used to store all the interrupt levels which
are requesting services. It has 8-interrupt lines (IR0 to IR7). When any of these lines
become high, the corresponding mask bit is checked and if it enabled, then the
corresponding bit in the interrupt request register (IRR) is set.

In-Service Register (ISR)

The in-service register (ISR) is used to store information of all the interrupt levels
which are currently being serviced.

Priority Resolver

 This block of Interrupt and Control Logic Section determines the priorities of the
bits set in the IRR. This block determines the priorities as dictated by the priority mode
set by the Operation Command Words (OCWs). The bit corresponding to the highest

priority interrupt is set in the ISR during the INTA input. It is a priority interrupt
controller, this means, even while executing an interrupt, it will accept and service a
higher priority; but it will reject a lower priority interrupt. The priority resolver does the
job of judging whether to allow another interrupt to be executed in the middle of
executing one interrupt service routine.

Interrupt Mask Register (IMR)

 The interrupt mask register (IMR) stores the bits of the interrupt lines to be
masked. The IMR operates on the ISR. In fact this register can be programmed by an
operation command word (OCW) to store the bits of the interrupt lines to be masked. An
interrupt which is masked by software will not be recognized and serviced even if it sets
the corresponding bit in the IRR.
Control Logic Section

 338

 After the interrupt request priorities are resolved by the priority resolver, this
block control logic sends an interrupt signal through its INT signal to the CPU. This
terminal INT is connected to the INTR terminal of the microprocessor. The

microprocessor responds to this request by putting an interrupt acknowledge signal INTA

to the input terminal INTA of the 8259A. The PIC then places the op code of CALL

instruction on the data bus. This is read by CPU, it places two additional INTAsignals on

the data bus. When the CPU receives the INTA signal out of these two additional INTA
signals, it places the low order byte of the CALL address on the data bus. After receiving

the last INTA signal, it places the high order byte of the CALL address on the data bus.
The CALL address is the vector memory location for t he interrupt; this address is placed
in the control register during the initialization of 8259.
2. Data Bus Buffer
 This is a three state bidirectional 8-bit data bus buffer is used to interface the
8259A to the system data bus. The control words and status information are transferred
through this data bus buffer.
3. Read/Write Control Logic Section
 The function of this Read/Write Control Logic section is to accept the commands
from the CPU. It contains the initialization command word (ICW) registers and the
operation command word (OCW) registers which store the various control formats for
device operation. This section also accepts Read commands from the CPU to allow the
CPU to read status words. The four pins are connected to this block whose functions are
given below:

CS (Chip Select)
 This pin is chip select terminal, which is active low. A low signal to this terminal
selects this device to work.

WR (Write)
 This is write input terminal, which is also active low. A low to this input enables
the CPU to write Initialization Control Word (ICW) and Operation Command Word
(OCW) to the 8259A.

RD (Read)
 A low to this pin enables the 8259A to send the status of the Interrupt Request
Register (IRR), In Service Register (ISR), the Interrupt Mask Register (IMR) or the BCD
of the interrupt level on the data bus.
A0

 This is the input signal used in conjunction with the signals WR and RD to write
the commands into the various status registers of the device. This terminal can directly be
connected to one of the address lines.
4. Cascade Buffer/Comparator Section
 It is well known that more than one 8259A can be used with the system to expand
the priority interrupt schemes up to 64 levels. In such cases one 8259A acts as the master
and the others act as slaves. The necessary control signals for cascade operations are

generated with this block. A high on the Slave Program/Enable Buffer (ENSP/) pin
designates the 8259A as the master and a low to this pin designates as slave. The 8259A

 339

can be set as master or a slave by the ENSP/ pin in the non-buffer mode, or by software

in buffer mode of operation. In the non-buffer mode ENSP/ pin is used as an output to

enable the data bus buffer of the system. In addition to ENSP/ pin, there are three more
pins (CAS0 – CAS2) associated with the cascade buffer/comparator section, whose
functions are described below:
 For a master, these pins (CAS0 – CAS2) are outputs, and for slave these are input
pins. When 8259 is a master, the CALL op code is generated by the master in response to

first INTA signal. The address for vector locations will be released by the slave 8259.
Every 8259 has the identification code of three bits to CAS0 – CAS2 lines so that one out
of eight possible slave may be selected by the master. Basically, the slave 8259s accept
the identification signals as inputs and compare the code put out by the master with code
assigned to them during initialization. The slave thus selected then puts out the address of

the interrupt service routine during the two additional INTA signals sent by CPU.
11.3 INTERFACING OF 8259A WITH 8085A
 Figure 11.4 shows the interfacing connection of 8259A with 8085A
microprocessor in I/O mapped I/O mode. The output of address decoder is connected to

 Fig. 11.4

 340

Fig.11.5

 341

the CS input of the 8259A. The A0 line of the IC is directly connected to the address

lines of the system. The RD and WR signals of the IC are connected to ORI / and

OWI / terminals respectively. Further, INT terminal of the 8259 is connected to the INTR

terminal of the processor. The INTA output of the processor is connected to the INTA

terminal of the processor. The terminal ENSP/ is connected to +5 V supply since only
one 8259 is used in the system. If many 8259s are cascaded, then this terminal is
connected to the ground terminal. The cascaded pins (CAS0 – CAS2) are left open. The
eight interrupt request pins IR0-IR7 are available for the I/O devices to send the interrupt
signals. If any of these interrupt request pins are not used, they may be connected to the
ground so that the noise pulse can not create any interrupt.

 The cascading of many 8259s with the system is shown in figure 11.5. The

ENSP/ terminal of the master PIC is connected to + VCC, whereas ENSP/ terminals
of all the slave PICs are connected to ground. The INT output of each slave PICs are
connected to one of the interrupt lines (IR0-IR7) of the master 8259 i.e. 8 INT terminals of
8 slave 8259s are connected to 8 interrupt request lines (IR0-IR7). When interrupt request
line of a slave is activated, the slave PIC in turn activates one of the interrupt request

lines of the master 8259, which in turn interrupts the microprocessor. After the INTA is
received from the microprocessor, the master enables the corresponding CAS0 – CAS2

lines to release the vector address on the data bus in the next two INTA signals.

 The output of the address decoder is connected to the CS of the 8259 PIC as
shown in figure 11.4. It communicates with the CPU with the bidirectional bus. From this
figure 11.4, it is clear that two I/O port addresses F0 H and F1 H are chosen for the 8259
with A0 = 0 and A0 = 1. It may be noted here that each 8259A (interfaced with 8085A)
has its own I/O address which is defined by the address decoder.
11.4 VECTORING DATA FORMATS FOR 8259
 The eight interrupt levels generate CALLs to eight equally spaced locations in the
memory. Through the programming, these locations can be spaced at an interval of 4 or 8

locations. The format of a byte released in response to the first INTA for any IR levels is
shown in figure 11.6.

Fig. 11.6

 It is the op code for the CALL instruction (CD H). The format of the byte in

response to the second INTA for different IR level is shown in figure 11.7, the details of
which are given in table 11.1(a) and (b). These tables show for both 4 and 8 interval
spacing. For spacing interval of four, the 8259 automatically inserts the bits D0 – D4 and
D5 – D7 as specified while programming the 8259 through ICW 1 (first initialization
command word, which will be discussed in the next section). For this interval bits D4-D2
specify the interrupt’s number and the rest two bits D1-D0 have been set to 00. However,

 342

for spacing interval of eight, the 8259 automatically inserts the bits D0 – D5 and D6 – D7
as specified while programming the 8259 through ICW 1. For the interval of 8, the bits
D5-D3 specify the interrupt’s number and the rest two bits D2-D0 have been set to 000.

 Fig. 11.7

 Table 11.1(a)

IR INTERVAL = 4
 D7 D6 D5 D4 D3 D2 D1 D0

7

6

5

4

3

2

1

0

A7

A7

A7

A7

A7

A7

A7

A7

A6

A6

A6

A6

A6

A6

A6

A6

A5

A5

A5

A5

A5

A5

A5

A5

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 Table 11.1(b)

IR INTERVAL = 8
 D7 D6 D5 D4 D3 D2 D1 D0

7

6

5

A7

A7

A7

A6

A6

A6

1

1

1

1

1

0

1

0

1

0

0

0

0

0

0

0

0

0

 343

4

3

2

1

0

A7

A7

A7

A7

A7

A6

A6

A6

A6

A6

1

0

0

0

0

0

1

1

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 From this table it is clear that the interrupt requests IR2 and IR4 for an interval of
eight is given by:
 D5 D4 D3 D2 D1 D0
 IR2 for an interval of 8 is 0 1 0 0 0 0
 IR 4 for an interval of 8 is 1 0 0 0 0 0

Similarly these interrupt requests for an interval of 4 is:

 D5 D4 D3 D2 D1 D0
 IR2 for an interval of 4 is 0 1 0 0 0
 IR 4 for an interval of 4 is 1 0 0 0 0

 Figure 11.8 shows the format of the byte released by the 8259A in response to the

third INTA. The bits D7-D0 represent the high order byte of the interrupt vector address
(A8-A15) of all the interrupts; which are specified in ICW 2.

Fig. 11.8

 It may be noted here that the 8259A does not allow each interrupt input to have its
own independent address. Instead, a base address can be programmed with four or eight
interval spacing as discussed above. For example, if the base address is 0100 H and the
interval spacing is four, then eight restart locations will exist as shown in table 11.2.
Normally, instructions to jump to the appropriate interrupt service routine would be
stored in these locations and the 32 bytes of memory from 0100 H to 011F H referred to
as jump table.

 344

 Table 11.2
Interrupt request Restart address

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR7

0100 H
0104 H
0108 H
010C H
0110 H
0114 H
0118 H
011C H

Example 11.1. For initialization of 8259 the address space available is from E010 H to
E040 H. What should be the jump table, if interval spacing between each restart interrupt
is four?
Solution. The address space available for the restart instruction is from E010 H to E040
H, so the restart address for the first interrupt request will start from E020 H, as the five
bits of the starting address must be 00000 (ref. Table 11.1a). The jump table is therefore
given in table 11.3.
 Table 11.3

Interrupt
request

Restart
address

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR7

E020 H
E024 H
E028 H
E02C H
E030 H
E034 H
E038 H
E03C H

11.5 INITIALIZATION OF 8259
 There are two types of command words in 8259A. These are:

• Initialization Command Words (ICWs)

• Operation Command Words (OCWs)

11.6 INITIALIZATION COMMAND WORDS (ICWs)

 There are four command words ICW 1, ICW 2, ICW 3 and ICW 4. The ICW 1
and ICW 2 commands are essential for any 8259A system. However, ICW 3 and ICW 4
commands are optional. The ICW 3 is used if the system has any slave 8259A. The
ICW 4 command is used for special operations like special fully nested mode. The
microprocessor programs the 8259A by loading the initialization command word (ICWs)
and operation command words (OCWs). Each 8259A in the system is first initialized by
loading a set of these ICWs in a sequence. The OCWs can be loaded any time after
initialization.

Initialization Command Word -1 (ICW 1)

 345

 The format for first initialization command word (ICW 1) is shown in figure 11.9.
When a byte is sent to the 8259A with A0 = 0, and D4 = 1, it is interpreted as initialization

Fig. 11.9

command word-1 (ICW 1). The interpretations of the bits of ICW 1 command word are
given below:

Bit D0 This bit gives the information if the command word ICW 4 is needed.

If D0 = 1, ICW 4 is needed.

If D0 = 0, ICW 4 is not needed i.e. all functions selected by ICW 4 are
cleared. This sets the 8259A in the 8085A mode without AEOI (automatic
End of Interrupt) and non-buffered operation; and no ICW 4 would be sent
with the initialization.

Bit D1 This bit gives the information if the 8259A is to be used in single or
cascaded mode.

 If D1 = 1, single 8259A is used and no slave 8259A is used.
 If D1 = 0, 8259A is used in cascaded mode.

Bit D2 This bit gives the information about vector address.

 346

 If D2 = 1, Interval for vector address is 4.

 If D2 = 0, Interval for vector address is 8.

Bit D3 The bit D3 gives the information about interrupt request inputs whether it
is edge triggered or level triggered.

 If D3 = 1, Interrupt request input is level triggered.
 If D3 = 0, Interrupt request input is edge triggered.

Bit D4 This bit is 1 for ICW 1, as discussed earlier.

Bits D5 to D7 These bits give the interrupt vector address (for 8085A only) i.e. these are
address bits of the CALL instruction.

Initialization Command Word -2 (ICW 2)
 A write command following ICW 1, with A0 = 0, is interpreted as ICW 2. The
format for this command word is shown in figure 11.10. This gives information regarding
Interrupt Vector Address. The bits D7-D0 represent the high order byte of the interrupt
vector address (A8-A15) for 8085 microprocessor. However, T7-T3 represent the vector
address for 8086/8088 microprocessors.

Fig. 11.10

Initialization Sequence of 8259A
 Once ICW1 is loaded, the following initialization procedure is carried out
internally:

• The edge sense circuit is reset. Since 8259A interrupts are edge sensitive, they are
reset.

• IMR is cleared.

• IR7 input is assigned the lowest priority.

• Slave mode address is set to 7.

• Special mask mode is cleared and status read is set to IRR.

• If IC4 = 0, all functions of ICW4 are set to zero. Master/slave bit is ICW 4 is used
in the buffered mode only.

 347

Example 11.2. Initialize 8259A to interface eight level triggered inputs. The restart
address of first interrupt request is E020 H. There is a spacing interval of four byte
between each interrupt request. No cascading of 8259A is made. Let the port address is
F0 H and F1 H for A0 = 0 and A0 = 1 respectively.

Solution. The single 8259A is to be initialized, so initialization command words ICW 1
and ICW 2 are to be written as given below:

ICW 1
 D7 D6 D5 D4 D3 D2 D1 D0

 A7 A6 A5 1 LTM ADI SNGL IC4
 0 0 1 1 1 1 1 0 = 3E H
 In ICW 1, D0 = 0 as no ICW 4 is required; D1 = 1 as single 8259 is used, D2 = 1 as
spacing interval of 4 is required, D3 = 1 as these are level triggered inputs, D7 D6 D5 are
001 as 20 H is the address of the first interrupt request (0010 0000).
ICW 2
 D7 D6 D5 D4 D3 D2 D1 D0

 A15 A14 A13 A12 A11 A10 A9 A8
 1 1 1 0 0 0 0 0 = E0 H
ICW 2 gives the address E0 H (base address) 1110 0000.
Program:
 MVI A, 3E H ; ICW 1 code is loaded to acc.
 OUT F0 H ; F0 H is the port address for A0 = 0.
 MVI A, E0 H ; Base address is given by ICW 2.
 OUT F1 H ; ICW 2 port address for A0 = 1.

Initialization Command Word -3 (ICW 3)

 As already discussed, ICW 1 and ICW 2 are compulsory command words in
initialized sequence of 8259A where as ICW 3 and ICW 4 are optional. The command
word ICW 3 is read only when cascading of 8259s is used, which is denoted by SNGL
(Bit D1) of ICW 1. The ICW 3 is further classified into following two modes:

 Master Mode ICW 3

 Slave Mode ICW 3.

 348

 Fig. 11.11

 The ICW 3 in Master and Slave modes are shown in figure 11.11 and 11.12
respectively. Each bit in ICW 3 of master mode is used to specify whether it has a slave
8259 attached to its corresponding interrupt request (IRQ) inputs. Suppose S0 bit is 1. It
indicates that 8259 is connected to interrupt request lines IR0. The command word will be
loaded to the 8 bit register and the functions of this register are:

• In the master mode (either when ENSP/ is high, or in buffered mode
when M/S = 1 in ICW 4) a 1 set for each slave in the system. The master
then will release byte 1 of the CALL sequence and will enable the
corresponding slave to release byte 2 and byte 3 through the cascaded
lines.

• In the slave mode (either when ENSP/ is low or if BUF = 1 and M/S = 0
in ICW 4) bits D2-D0 identify the slave. The slave compares its cascade
inputs with these bits and if they are equal, bytes 2 and 3 of the CALL
sequence are released by it on the data bus.

Fig. 11.12

Initialization Command Word -4 (ICW 4)

 This command word is loaded only if IC4 bit of the command word ICW 1 is 1.
That is if IC4 = 1 (of ICW 1) then command word -4 (ICW 4) is used otherwise it is

 349

neglected. The format of this command word is shown in figure 11.13. The bits of this
command word identify the following operations:

µPM This specifies if 8080/8085A or 8086/8088 operation environment is used.
 If µPM = 1, 8086/8088 microprocessor operation is selected.
 If µPM = 0, then the 8080/8085A operation is selected.

AEOI If this bit is 1, then the automatic end of interrupt mode is selected,
otherwise normal end of interrupt mode.

M/S If M/S = 1, then 8259A is master.
 If M/s = 0, then 8259A is slave.
 If BUF = 0, then M/S bit is neglected.

 Fig. 11.13

BUF If BUF = 1, then buffered mode is selected. In buffered mode ENSP/

acts as enable output and Master/Slave is determined by M/S bit of ISW 4.

SFNM If SFNM = 1, then fully nested mode is selected.
 If SFNM = 0, then fully nested mode is not selected.

Figure 11.14 shows the flow chart for the initialization of 8259A.

 350

Fig. 11.14
11.7 OPERATION COMMAND WORDS (OCWs)
 Once 8259A is initialized using initialization command words (ICWs), the 8259 is
ready to accept interrupt requests. For this purpose, different operation command words
(OCWs) are loaded in to operation command word registers. There are three operation
command words (OCWs) namely: OCW 1, OCW 2 and OCW 3. Now the discussion will
made of the operation command words.
Operation Command Word-1 (OCW 1)
 This operation command word is written to mask or unmask an interrupt request
input. The format for OCW 1 is shown in figure 11.15. For this word A0 must be high. In
this format it is clear if M = 0, then the particular interrupt request is to be unmasked or
enabled, however, if M = 1, it is masked or inhibited.

 351

Fig. 11.15

 For example, in order to enable the interrupts IR6, IR4 and IR1 then the bit
pattern of this operation command word will be:
 D7 D6 D5 D4 D3 D2 D1 D0
 0 1 0 1 0 0 1 0

Operation Command Word-2 (OCW 2)

 A write command with A0 = 0 and D4 D3 = 0 0 is interpreted as OCW 2, which is
used to control the Rotate and End of interrupt mode. This is also called End of Interrupt
Command. The OCW 2 is mainly used to reset a bit in the in service register (ISR). The
format for this operation command word is shown in figure 11.16.
 R, SL and EOI – bits control the Rotate, End of interrupt modes and the
combination of two. The bits L2, L1 and L0 determine the interrupt level acted upon when
the SL bit is active.
 When an interrupt request is acknowledged, the 8259A determines the interrupt of
highest priority and sets its corresponding bit in the ISR (in service register). The vector
address corresponding to this interrupt is then put out. The bit in ISR remains set until an
End of Interrupt (EOI) command through OCW 2 is issued by the CPU. At the end of the
service routine, the corresponding bit in ISR is to be reset; otherwise other priority
interrupts will not interrupt. The 8259A can respond to the interrupt signal of lower
priority once the bit of the current IR bit in ISR is reset. The operation command word-2
(OCW 2) can issue the End of Interrupt (EOI) in the following three forms:

 352

 Fig. 11.16

Non Specific EOI Command
 In fully nested mode, the highest level in the ISR would necessarily correspond to
the last interrupt acknowledged and services. In such a case, a non-specific end of
interrupt command (EOI) may be issued by the CPU by the OUT instruction to the
8259A with A0 = 0. For this bit pattern in the format of OCW 2 is given by:
 D7 D6 D5 D4 D3 D2 D1 D0
 0 0 1 0 0 0 0 0
 The EOI bit (D5) of the operation command word-2 (OCW 2) is set to 1. This
resets the highest priority in service bit of ISR.
Specific EOI Command
 If the fully nested mode is not used, the 8259 may not be able to determine the
last interrupt acknowledged. In such case, a specific EOI command will have to be issued
by the CPU by the OUT instruction to the 8259A with A0 = 0. For this bit pattern in the
format of OCW 2 is given by:
 D7 D6 D5 D4 D3 D2 D1 D0
 0 1 1 0 0 L2 L1 L0

 In this bit pattern SL and EOI bits must be set to 1 and the encoded three bit value
of the specific bit is written for L2, L1, L0.

 353

 For example, in order to reset the bit 3 of the in service register corresponding to
IR3, then the bit pattern of the OCW 2 will be given by:
 D7 D6 D5 D4 D3 D2 D1 D0
 0 1 1 0 1 0 0 0 = 68 H
 This operation command OCW 2 must be issued twice in case of cascaded mode;
one for master and the other for slave.
Automatic End of Interrupt (AEOI)
 If this mode is set, no command is necessary to reset the highest priority in service
bit in the ISR. The bit in ISR will be reset automatically at the trailing edge of the third

INTA signal sent by the CPU. This AEOI mode can only be used for a master 8259A and
not for a slave. The AEOI is actuated by writing ICW 4 with D1 bit to 1. At the time of
writing the ICW 4, the A0 line should be 1.
Operation Command Word-3 (OCW 3)
 The format for OCW 3 is shown in figure 11.17. This word is used to read the
status of the In Service Register (ISR) and Interrupt Request Register (IRR); and to set
or reset the special mask and polled modes.

Fig. 11.17

11.8 INTERRUPT MODES OF 8259A
There are following modes of operations of 8259A:

� Fully Nested Mode

� Rotating Priority Mode

� Special Mask Mode

� Polled Mode

11.8.1 Fully Nested Mode (FNM)
 The fully nested mode is the general purpose mode in which all interrupt requests
are arranged from the highest to lowest priority level. In general, IR0 has the highest

 354

priority and IR7 has the lowest priority. This is the default mode setting after
initialization. The 8259 continues to operate in FNM until the mode is changed by
OCWs. As discussed above, when an interrupt request is acknowledged, the 8259
determines the highest priority interrupt and set its corresponding bit in in-service register
(ISR). The vector address corresponding to this interrupt is then put out. The bit in ISR
remains set until an End of Interrupt (EOI) command through OCW 2 is issued by the
CPU. At the end of the service routine, the corresponding bit in ISR is reset using OCW2.
11.8.2 Rotating Priority Mode
 Though by default the priorities of the inputs are assigned as IR0 as the highest
priority and IR7 as the lowest priority. But the priorities may be changed using either by
automatic rotation or by specific rotation.
Automatic Rotation
 This mode is used when all the interrupts are assigned equal priority. In this
mode, currently executing interrupt is given the lowest priority after completing its
service routine. The next interrupt level is assigned the highest priority. For example, the
interrupt request IR4 and IR6 are being serviced as it can be read from the status of ISR
(figure 11.18). As usual IR4 is assigned highest priority and will be executed first. When
the interrupt service routine for IR4 is executed, this bit will be reset after EOI command
as discussed earlier. Now in this mode of automatic rotation the interrupt IR4 will have
the lowest property and the next interrupt will have the highest priority as shown in figure
11.19.

Fig. 11.18

Fig. 1.19

 355

 Automatic rotation mode on an AEOI is set by loading an OCW 2 with R = 1, SL
= 0 and EOI = 0 and is reset by loading an OCW 2 with R = 0, SL = 0, and EOI = 0.
Specific Rotation
 In this, the programmer can change the priority by programming the lowest
priority. This mode is set by CPU by issuing an OUT instruction with A0 = 0 and other
bit pattern as given below:
 D7 D6 D5 D4 D3 D2 D1 D0
 1 1 0 0 0 L2 L1 L0

 The bits D2-Do specify the interrupt level that is to be assigned lowest priority.
The specific rotation can be accomplished by using the Rotation of specific EOI in
OCW2 as R = 1, SL = 1 and EOI = 1.
11.8.3 Special Mask Mode
 It may sometimes be desirable to selectively enable lower priority interrupts.
Usually, if an EOI command is not given to the 8259A, the in service bit of the last
serviced interrupt is not reset. As a result all lower priority interrupts are kept disabled.
 This special mask mode can be set by making ESMM and SMM bits as 1 in OCW
3. When a mask bit is set in OCW 1, all further interrupts at that level are inhibited; while
interrupts on all other levels that are not masked are enabled. It is thus possible to
selectively enable interrupts by programming the mask register. This mode can be cleared
by loading an OCW 3 with ESSM = 1 and SMM = 0.
11.8.4 Polled Mode
 In this mode the INT output of 8259A is not used. It is either not connected to the
INTR input of 8085A or the system interrupts are disabled by software. The 8259A
assign the priorities IR0 through IR7 inputs and provides a status port that can be polled.
The status byte has the form as shown in figure 11.20.

 Fig. 11.20
11.9 STATUS READ OPERATION OF 8259
 The status of the Interrupt Request Register (IRR), the In-Service Register (ISR)
and the Interrupt Mask Register (IMR) of the 8259 may be read by using appropriate read
command. These read commands are described below:
Reading IRR Status
 Just before reading the IRR (interrupt request register), OCW 3 must be written
by making RR (read request) as 1 and RIS (read ISR) as 0. At the time of writing this
operation command word, address line A0 and read signal must be 0. Internally OCW 2
and OCW 3 are recognized by sensing the D4 and D3 bits as:
 D4 D3

 0 0 for OCW 2

 356

 1 0 for OCW 3.
 After writing the OCW 3, the interrupt request status can be read by using the IN
instruction.
 IN F0 H if F0 H is the port address with A0 = 0.
Reading ISR Status
 For reading ISR status, OCW 3 is initially written with RR = 1 and RIS = 1. The
In-service register content can be read using the IN instruction with A0 = 0.
 IN F0 H if F0 H is the port address with A0 = 0.

Reading IMR Status
 The contents of Interrupt Mask Register (IMR) can be read just by making the A0
= 1. The OCW 3 is not written just before reading.
 IN F1 H if F1 H is the port address with A0 = 1.
Example 11.3. Assume that initialization command words have been written to 8259A
(single) having the port address 20 H and 21 H for A0 = 0 and A0 = 1 respectively. Now
write proper operation control words for a fully nested priority structure. Mask IR1, IR4
and IR6; enable ISR for a read. What code should be used at the end of interrupt service
routine?

Solution. The initialization commands have already been written. The operation
command words are written as:

OCW 1 A0 =1
 D7 D6 D5 D4 D3 D2 D1 D0

 M7 M6 M5 M4 M3 M2 M1 M0
 0 1 0 1 0 0 1 0 = 52 H
 In this OCW 1, M1, M4 and M6 are 1 as IR1, IR4 and IR6 are masked.
For reading ISR status, OCW 3 is initially written with RR = 1 and RIS = 1.
OCW 3
 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 ESMM SMM 1 P RR RIS
 0 0 0 0 1 0 1 1 = 0B H
 In fully nested mode, the highest level in the ISR would necessarily correspond to
the last interrupt acknowledged and services. In such a case, a non-specific end of
interrupt command (EOI) may be issued by the CPU by the OUT instruction to the
8259A with A0 = 0. For this bit pattern in the format of OCW 2 is given by:
 D7 D6 D5 D4 D3 D2 D1 D0
 0 0 1 0 0 0 0 0 = 20 H
 The EOI bit (D5) of the operation command word-2 (OCW 2) is set to 1. This
resets the highest priority in service bit of ISR.
PROGRAM:
 MVI A, 52 H ; OCW 1 is loaded to accumulator.
 OUT 21 H ; 21 H is the port address for A0 = 1.
 MVI A, 0B H ; OCW 3 is loaded to accumulator to enable the ISR

for read.
 OUT 20 H ; 20 H is the port address for A0 = 0,
 IN 20 H ; Read ISR

 357

 Each interrupt service routine must end by giving the non-specific EOI command
which resets in service bit (ISR bit).
 MVI A, 20 H
 OUT 20 H
 RET

Example 11.4. Write Initializing command word to program 8259A (single) with port
addresses C0 H and C1 H for A0 = 0 and A0 = 1 respectively. Let the starting address of
the interrupt request is 7000 H with interval spacing of 4. The interrupts are edge
triggered. Interrupts 1 and 3 are masked.

Solution. The single 8259A is to be initialized, so initialization command words ICW 1
and ICW 2 are to be written as given below:

ICW 1
 D7 D6 D5 D4 D3 D2 D1 D0

 A7 A6 A5 1 LTM ADI SNGL IC4
 0 0 0 1 0 1 1 0 = 16 H
 In ICW 1, D0 = 0 as no ICW 4 is required; D1 = 1 as single 8259 is used, D2 = 1 as
spacing interval of 4 is required, D3 = 0 as these are edge triggered inputs, D7 D6 D5 are
000 as 00 H is the address of the first interrupt request (0000 0000).
ICW 2
 D7 D6 D5 D4 D3 D2 D1 D0

 A15 A14 A13 A12 A11 A10 A9 A8
 1 1 1 0 0 0 0 0 = E0 H
 ICW 2 gives the address 70 H (base address) 0111 0000.

 The operation command word is written as:

OCW 1 A0 =1
 D7 D6 D5 D4 D3 D2 D1 D0

 M7 M6 M5 M4 M3 M2 M1 M0
 0 0 0 0 1 0 1 0 = 0A H
 In this OCW 1, M1and M3 are 1 as IR1 and IR3 are masked.
Program:
 MVI A, 16 H ; ICW 1 code is loaded to acc.
 OUT C0 H ; C0 H is the port address for A0 = 0.
 MVI A, 70 H ; Base address is given by ICW 2.
 OUT C1 H ; ICW 2 port address for A0 = 1.
 MVI A, 0A H ; OCW 1 for masking.
 OUT C1 H ; Port address for A0 = 1.

Example 11.5. After initializing 8259A with port addresses C0 H and C1 H for A0 = 0
and A0 = 1 respectively. Give the instruction sequence to read ISR status and IMR status.

Solution. After initialization of 8259A , OCW 3 is written with RR = 1 and RIS = 1, to
enable reading of ISR status (this is necessary for reading the status of ISR). So OCW 3
is given as:

OCW 3

 358

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 ESMM SMM 1 P RR RIS
 0 0 0 0 1 0 1 1 = 0B H
 The instruction sequence is then given for the reading the status of ISR and IMR
as:
Program:

 MVI A, 0B H ; OCW 3 code is loaded to acc. to enable the
reading of ISR status.

 OUT C0 H ; C0 H is the port address for A0 = 0.
 IN C0 H ; Read the status of ISR.
 IN C1 H ; Read the status of IMR.
Example 11.6. An interrupt service routine written for 8259A having port addresses F0
H and F1 H, ends with the instruction sequence given as:
 MVI A, 22 H
 OUT F0 H
 RET
How does the 8259A interpret these instructions?
Solution. First instruction MVI A, 22 H will show the bit format for OCW 2 is given by:
 D7 D6 D5 D4 D3 D2 D1 D0
 0 0 1 0 0 0 1 0
 This resets the IR2 in service bit of ISR. This is a non-specific end of interrupt
command (EOI) may be issued by the CPU by the OUT instruction to the 8259A with A0
= 0.

PROBLEMS
1. Draw the block diagram of programmable interrupt controller (PIC) 8259A and

discuss its various blocks.
2. Describe how the interfacing of 8259A with 8085A microprocessor is done.
3. Discuss how the cascading of 8259A is carried out. How many 8259s may be

cascaded? What is the function of master 8259A in the cascading mode?
4. Discuss how initialization of 8259 is carried out.
5. Describe various Initialization command words in 8259A (PIC).
6. What do you understand by operation command words in 8259A? Discuss any

one command word.
7. Explain the various interrupt modes of 8259A.
8. Discuss status read operation of 8259A.
9. Explain the vectoring data format of 8259A (PIC).
10. Discuss Rotating Priority mode of operation of 8259A.
11. Initialize 8259A to interface eight edge triggered inputs. The restart address of

first interrupt request is 1020 H. There is a spacing interval of four byte between
each interrupt request. No cascading of 8259A is made. Let the port address is C0
H and C1 H for A0 = 0 and A0 = 1 respectively.

12. Assume that initialization command words have been written to 8259A(single)
having the port address F0 H and F1 H for A0 = 0 and A0 = 1 respectively. Now

 359

write proper operation control words for a fully nested priority structure. Mask
IR2, IR3 and IR5; enable ISR for a read. What code should be used at the end of
interrupt service routine?

13. Write Initializing command word to program 8259A (single) with port addresses
20 H and 21 H for A0 = 0 and A0 = 1 respectively. Let the starting address of the
interrupt request is 8000 H with interval spacing of 4. The interrupts are edge
triggered. Interrupts 0 and 4 are masked.

14. Write a non-specific end of interrupt command (EOI) to reset IR3 in service bit of
ISR4. Assume the port addresses 20 H and 21 H for 8259.

15. After initializing 8259A with port addresses F0 H and F1 H for A0 = 0 and A0 = 1
respectively. Give the instruction sequence to read ISR status and IMR status.

16. Explain the following initialization instructions:
 MVI A, 3E H ; ICW 1
 OUT 80 H ; Initialize 8259A
 MVI A, E0 H ; ICW 2
 OUT 81 H ; Initialize 8259A

12

Direct Memory Access
Controller: 8257

 It has already been discussed in an earlier chapter of this book, that the Direct
Memory Access (DMA) is the efficient way of transferring the data from the memory to
the I/O devices or vice versa without involving the CPU. In DMA operation, the CPU
relinquishes the control over the data bus and address bus, so that these can be used for
transfer of data between the memory and I/O devices directly. For the data transfer using
DMA process, a request to the microprocessor by the I/O device is sent and on receipt of
such request, the microprocessor relinquishes the address and data buses and informs the
I/O devices of the situation by sending Acknowledge signal. However, in the usual
method of data transfer between the I/O devices and the memory, it involves the
microprocessor. Each byte is routed through the accumulator, as a result of which it takes
lot of time for transferring a large amount of data. For the purpose of DMA operation, a
DMA controller is necessary to interface the peripheral to the system. Intel 8257 is a 4-
chennel programmable DMA controller used with 8085 and other microprocessors for
this mode. In this chapter the details of the DMA controller 8257 will be discussed.

12.1 BLOCK DIAGRAM OF 8257

 The 8257 Programmable DMA controller is available in the form of IC dual in
line package. It consists of 40 pins and requires +5 volt d.c. supply for its operation. The
8257 enables to interface up to four I/O devices to the microprocessor for the data
transfer between the memory and the I/O devices or vice versa using DMA. It has forum
DMA channels. Each channel consists of two 16 bit registers. One of these registers holds
the address to be used in the next DMA cycle. The other register holds, in the least
significant 14 bits, the total number of bytes to be transferred between the memory and
peripherals. The two most significant bits of this register are set to indicate the operation
to be performed by the device on that channel. A total of 16384 (214 = 16 K) bytes of data
may directly be transferred under DMA control without any intervention of the
microprocessor.
 Figure 12.1 shows the pin diagram of 8257. The pin names of this IC are given
below:

 361

D0-D7 Data bus HLDA HOLD Acknowledge
A0-A7 Address bus AEN Address Enable

I/OR I/O Read ADSTB Address Strobe

I/OW I/O Write TC Terminal Count

MEMR Memory Read MARK Modulo 128 MARK

WMEM Memory Write DRQ0-DRQ3 DMA Request Input

CLK Clock Input 0DACK - 3DACK DMA Acknowledge
 OUT

RESET RESET Input CS Chip Select
READY Ready VCC +5 V
HRQ HOLD Request GND Ground

Fig. 12.1

 The internal block diagram and schematic diagram of 8257, DMA Controller
(DMAC) are shown in figures 12.2 and 12.3 respectively. It contains the following
blocks:

 362

� DMA Channels
� Data Bus Buffer
� Read/ Write Logic
� Control Logic
� Mode Set Register
� Status Word Register

Fig. 12.2

 363

Fig. 12.3
12.1.1 DMA Channels
 The 8257 provides 4 channels which can be connected to four separate I/O
devices. These channels are designated as Channel 0 (CH-0), Channel 1 (CH-1), Channel
2 (CH-2) and Channel 4 (CH-4). Each of these channels has two 16-bit registers:
 DMA Address Register
 Terminal Count Register.
 DMA Address Register contains the memory address from where the data transfer
should begin. This address is loaded by the CPU.
 The terminal count register is used to store the number of bytes to be transferred.
In this 16 bit register, the least significant 14 bits are used to store the number of bytes to
be transferred. In this way one DMA operation can transfer to a maximum of 16 K bytes.
The most significant two bits of the terminal register represent the operation to be
performed by the device. The operations to be performed are Write, Read and Verify.
Figure 12.4 shows the format of the terminal count register of a DMA channel.

 364

Fig. 12.4

� During DMA write operation, the data is transferred from the peripheral to
memory.

� During DMA read operation, the data is transferred from memory to
peripheral.

� DMA verify operation does not actually involve the transfer of data.

Each channel has two signals: DMA REQUEST Signal and DMA
ACKNOWLEDGE Signal.

DMA REQUEST Signals (DRQ0 – DRQ3):

There are four DMA request signals (DRQ0 – DRQ3) in the 8257 connected one
with each channel. Each channel accepts a DMA request through this pin from the
peripheral. The DMA controller 8257 has priority facility. The channel 0 (CH 0) has the
highest priority and the channel 3 (CH 3) has the lowest priority. As per the priority, a
request is generated by the peripheral by making corresponding DRQ line high and
holding it high until DMA operation is over.

DMA ACKNOWLEDGE Signals (0DACK - 3DACK):

Likewise the DMA request signals, 8257 has the four DMA acknowledge signals

(0DACK - 3DACK) connected one with each channel. As discussed above, each
channel accept a DMA request through it DRQ line from the peripheral. After the receipt

of the request channel issues an acknowledge signal through DACK output of that
channel. It is an active low signal and signifies that the request to be serviced for a DMA
cycle is accepted. This signal is made high on completion of the transfer.

 365

12.1.2 Data Bus Buffer
 This three state, bidirectional eight bit buffer (D0-D7) interfaces the 8257 to the
system data bus. When the CPU has the control over the system buses (Slave Mode), the
D0-D7 pins of the 8257 are used as input pins. The eight bits of data for a DMA address
register and terminal count register or the mode set register are received on the data bus.
In this slave mode, the CPU can also read eight bits of data at a time from the 16-bit
DMA address and terminal count register or from the eight bit status register. However,
in the master mode (for DMA cycle, when the CPU relinquishes the control over the
control and data buses), the D0-D7 pins are used for different purpose. At the beginning of
each DMA cycle, most significant bits of DMA address register are put on these pins
which are further latched to an external chip 8212 used as latch. These latched values are
put on A8-A15 of the system address bus. The D0-D7 bus is then released to handle the
memory data transfer during the remainder of the DMA cycle.

12.1.3 Read/ Write Logic
 When the CPU is programming or reading one of the registers of 8257 (i.e. when

the 8257 is in slave mode), the Read/ Write logic accepts the I/ O Read (I/OR) or I/O

Write (I/OW) signal. It then decodes the least significant four address bits (A0-A3), and

writes the contents of the data bus into the addressed register (if I/OW is active) or

places the contents of the addressed register onto the data bus (if I/OR is active). During
DMA cycle (i.e. when the 8257 is in master mode), the Read/ Write logic generates the
I/O Read and Memory Write cycle (DMA Write cycle) and generates the Memory Read
and I/O Write Cycle (DMA Read cycle).

I/OR(I/O Read)
 This is an active low, bidirectional three-state pin. In the slave mode, it is an input
signal which allows the 8-bit status register or the upper/lower byte of a 16-bit DMA

address register or terminal count register to be read. In the master mode, I/OR is a
control output, which is used to access data from a peripheral during the DMA write
cycle.

I/OW (I/O Write)
 This is also an active low, bidirectional three-state pin. In the slave mode, it is an
input signal which allows the contents of the data bus to be loaded into the 8-bit mode set
register or the upper/lower byte of a 16-bit DMA address register or terminal count

register. In the master mode, I/OW signal is a control output which allows data to be
output to a peripheral during a DMA read cycle.

CLK (Clock input)
 This input is generally connected to an external clock or to the 8085A CLK
output.

RESET (Reset)
 This is an active high asynchronous input which disables all DMA channels and
clears the mode set register. It also tri states all the control lines.

 366

CS (Chip Select)
 This is an active low input which enables the I/O Read or I/O write input when

the 8257 is being read or programmed in the slave mode. In the master mode, CS input is
automatically disabled. This is done to prevent the 8257 from selecting itself when it puts
out DMA addresses on the address bus.

A0-A3 (Address lines)
 These least significant four address lines are bidirectional. In the slave mode, they
are inputs which select one of the registers to be read or programmed. In the master
mode, they are outputs which constitute the least significant four bits of the 16-bit
address generated by the 8257.

12.1.4 Control Logic
 This block controls the sequence of operations during all DMA cycles by
generating the appropriate control signals and the 16-bit address that specifies the
memory location to be accessed. The pins associated with the control logic are described
below.

A4-A7 (Address lines)
 These four address lines are the three state output lines. Bits 4-7 of the DMA
address register are put on these address lines during the DMA cycles. So, the A0-A7 of
8257 carry the least significant byte of DMA address during the execution of a DMA
cycle.

READY
 This ready input signal can be used by the devices with slow access time in order
to insert the wait states during DMA transfer. It has similar function to the Ready input
pin of 8085.

HRQ (Hold Request)
 This output requests control of the system bus. In systems with only one 8257,
this signal will be normally applied the HOLD input of the CPU. HRQ must confirm to
specified setup and hold times.

HLDA (Hold Acknowledge)
 This is an input from the CPU that informs the 8257 that it has relinquished
control of the buses and 8257 may take over the control.

MEMR (Memory Read)
 This is a three-state active low output which is used to read data from the
addressed memory location during DMA Read cycles.

MEMW (Memory Write)
 This is also three state active low output which is used to write data into the
addressed memory location during DMA Write cycles.

 367

ADSTB (Address Strobe)
 This is an active high signal which is generated at the beginning of each DMA
cycle and has a similar function as that of ALE pin of 8085A.

AEN (Address Enable)
 This is an output pin used to float the system data bus and the system control bus.
It may also be used to float the system address bus. It may further be used to isolate the
8257 data bus from the system data bus to facilitate the transfer of the 8-bit most
significant DMA address bits over the 8257 data I/O pins. When the 8257 is used in an
I/O device structure, this AEN output is used to disable the selection of an I/O device
when the DMA address is on the address bus. The I/O device selection should be
determined by the DMA acknowledge output for the four channels.

TC (Terminal Count)
 This is an active high output. When this pin is high it indicates to the currently
selected peripheral that the present DMA cycle is the last cycle for this data block. This
output goes high, when the contents of the terminal count register of the selected channel
are equal to zero. By programming the mode word, a channel can automatically be
disabled after its last DMA cycle.

MARK (Modulo 128 Mark)
 This active high output notifies the selected peripheral that the current DMA cycle
is the 128th cycle since the previous mark output. Mark always occurs at 128 (and all
multiples of 128) cycles from the end of the data block. Only if the total umber of DMA
cycles (n) is evenly divisible by 128, mark will occur at 128 cycles from the beginning of
the data block.

12.1.5 Mode Set Register

The format of Mode Set Register of 8257 is shown in figure 12.5. The control
word in the mode set register enables or disables channels and determines other
functions. The mode set register can be accessed only for write operation. The various
bits in this mode set register enable each of the four DMA channels and four different
options for the 8257. The mode set register is cleared by the RESET input, thus disabling
all options, inhibiting all channels. This mode set register is also used for programming
the 8257 in the following options:

• Rotating Priority
• Extended Write
• TC Stop
• Auto Load

 368

 Fig. 12.5

Rotating Priority
 The bit 4 (D4) of the Mode Set Register enables to set the rotating priority mode
of the 8257. In the rotating priority mode, the priority of the channels has a circular
sequence as shown in figure 12.6. After each DMA cycle the priority of channels has
circular sequence. After each DMA cycle, the priority of each channel changes. The
channel which had just been serviced will have the lowest priority (Figure 12.7).

 Fig. 12.6

If the rotating priority bit is not set (D4 = 0), each DMA channel has a fixed
priority. In the fixed priority mode, channel 0 has the highest priority and the channel 3
has the lowest priority. If the rotating priority bit D4 is set to 1, the priority of each
channel changes after each DMA cycle (not each DMA request). Each channel moves up
to the next highest priority assignment, while the channel which has just been serviced
moves to the lowest priority assignment.

 369

 Fig. 12.7

Extended Write
 The bit 5 (D5) of the mode set register is used for extended write option. The data
transfer with in microcomputer systems takes place asynchronously which allow the use
of various types of memory and I/O devices with different access times. If the device can
not be accessed within the specified amount of time, it returns a ‘Not Ready’ signal on
the READY input of the 8257 due to which one or more wait states are inserted in the
internal sequencing. Some devices are fast enough to be accessed without the use of wait

states. But if they generate their Ready response with the leading edge of the I/OW or

MEMW signal (which generally occurs late in transfer sequence), they would normally
cause the 8257 to enter a wait state because it does not receive Ready in time. For
systems with these types of devices, the extended write operation provides alternative
timing for the I/O and memory write signals which allows the devices to return on early
Ready and prevents the unnecessary occurrence of wait states in the 8257.

TC Stop
 If the TC stop bit (D6) of the mode set register is set, a channel is disabled (i.e. its
enable bit is reset) after the terminal count (TC) output goes high, thus automatically
preventing further DMA operation on that channel. To continue or begin another DMA
operation, the enable bit of that channel must be reprogrammed.
 If the TC is not set, the occurrence of TC bit output has no effect on the channels
enable bits. In that case, it will be responsibility of the peripheral to cease DMA requests
in order to terminate a DMA operation.

Auto Load
 Bit D7 of the mode set register enables Auto Load mode. In some cases, it
becomes necessary to perform DMA operation repeatedly. In case of a CRT monitor, the
data has to repeatedly send to the monitor and this process is called refreshing. With the
auto load option, the DMA controller permits such repetitive operation. This bit permits
channel 2 to be used for repeat block operation. If the auto load mode is set (D7 = 1), the
initial parameters of channel 2 are automatically copied onto channel 3. The channel 2 is
programmed with the initial parameters for the first DMA block. When the DMA block
of channel 2 is completed, the parameters stored in channel 3 are copied onto channel 2.
The channel 2 is then serviced again with the same parameters for repetitive DMA
operations. For chaining operation, channel 3 is loaded with a different set of parameters

 370

after channel 2 is loaded; the new parameters are copied onto channel 2 during the update
cycle and channel 2 is serviced with a new set of parameters.

12.1.6 Status Word Register

The eight bit status register is shown in figure 12.8. The status register can be read
for the status of the terminal counts of the four channels. It also contains the update flag.
The count bits (D0-D4) of the four channels are set when the terminal count output is high
for that channel. The TC bits go low when the status word is read or when the 8257
receives a Reset input. The update flag is reset when:

� 8257 is reset or

� Auto load option in the mode set register is disabled or

� Update cycle gets completed.

Fig.12.8

12.2 PROGRAMMING OF 8257
 As discussed above, there are four pairs of channel registers in 8257; each pair
consisting of a 16-bit Address Register and 16 bit Terminal Count Register i.e. one pair
for each channel. The 8257 also includes two general registers one 8-bit Mode Set
Register and other 8-bit Status Register. These various registers are accessed with the
help of four input lines (A0-A3) and an internal F/L flip-flop (First/ Last Flip-flop). The
address bit 3 (A3) signifies whether a channel register or the mode set register is being
accessed. If A3 = 0, then channel register is accessed and if A3 = 1, then the mode set
register is accessed. The other three address bits (A0-A2) specify which register is to be
accessed. When these bits (A0-A2) are all zero, the mode set register or status register is
being accessed. The 8257 distinguishes between the mode set register (which is write

only operation) and the status operation (which is read only operation) by the OWI / and

ORI / inputs respectively. Table 12.1 illustrates the status of A3 and the control inputs
for accessing the various registers. For channel registers, A2 A1 specify one of the four
channels i.e. for channel 0, it is 00, for channel 1 it is 01, for channel 2 it 01 and for
channel 3 it is 11. The bit A0 specifies whether channel register or terminal count register

 371

is to be accessed. If A0 = 0, channel register is accessed and if A0 = 1, terminal count
register is accessed. The F/L flip-flop is reset by reset input. This flip-flop toggles for
access of the 8257 registers and determines whether upper or lower order byte of a
particular register is accessed. It requires that the reading of the address registers or the
terminal count registers should be done in pairs; the lower order byte should be accessed
first. The addressing of the registers is shown in table 12.2.

Table 12.1
CONTROL INPUT CS OWI / ORI / A3

Program Half of a
Channel Register

0

0

1

0

Read Half of a
Channel Register

0

1

0

0

Program Mode Set
Register

0

0

1

1

Read Status Register

0

1

0

0

Table 12.2

ADDRESS INPUTS State of
Register Accessed A3 A2 A1 A0 FF

F/L
CS

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

1
1

1
1

1

0
0

0
0

1
1

1
1

0
0

0
0

1

0
0

1
1

0
0

1
1

0
0

1
1

0

0
1

0
1

0
1

0
1

0
1

0
1

0

0
0

0
0

0
0

0
0

0
0

0
0

0

 LOB of DMA address CH 0
 HOB of DMA address CH 0

 LOB of Counts of Terminal Count Register CH 0
 HOB of Counts of Terminal Count Register CH 0

 LOB of DMA address CH 1
 HOB of DMA address CH 1

 LOB of Counts of Terminal Count Register CH 1
 HOB of Counts of Terminal Count Register CH 1

 LOB of DMA address CH 2
 HOB of DMA address CH 2

 LOB of Counts of Terminal Count Register CH 2
 HOB of Counts of Terminal Count Register CH 2

 LOB of DMA address CH 3

 372

0

0
0

1
1

1

1
1

0
0

1

1
1

0
0

0

1
1

0
0

1

0
1

0
0

0

0
0

0
0

 HOB of DMA address CH 3

 LOB of Counts of Terminal Count Register CH 3
 HOB of Counts of Terminal Count Register CH 3

 Mode Set Register (Write Only)
 Status Register (Read Only)

 HOB – High order byte
 LOB – Low order byte

The microprocessor can either read data from or write data into DMA address
register and the terminal count register of each channel of 8257. The status register can be
read and mode set register may be programmed. All these operations have been discussed
above and carried out during the slave mode of 8257.

If the address decoder circuit for the chip select terminal of DMA controller 8257
shown in figure 12.9 is used, it will give the addresses of DMA registers and terminal
count registers of all the four channels along with the address of the mode set registers.
These addresses are given in table 12.3.

Fig. 12.9

 373

Table 12.3

A7 A6 A5 A4 A3 A2 A1 A0 Address

0 1 0 0 0 0 0 0 70 H DMA address CH 0
0 1 0 0 0 0 0 1 71 H TC address CH 0

0 1 0 0 0 0 1 0 72 H DMA address CH 1
0 1 0 0 0 0 1 1 73 H TC address CH 1

0 1 0 0 0 1 0 0 74 H DMA address CH 2
0 1 0 0 0 1 0 1 75 H TC address CH 2

0 1 0 0 0 1 1 0 76 H DMA address CH 3
0 1 0 0 0 1 1 1 77 H TC address CH 3

0 1 0 0 1 0 0 0 78 H Mode Set Reg addr.

 The various registers have to be first initialized and then DMA operation will be
started. The steps, to be followed for the DMA operation of 8257 (Master Mode), after its
initialization, are given as:

• The I/O device sends a DMA request signal (DRQ) when it is
ready to for the data transfer.

• The 8257 sends Hold Request signal (HRQ) high to the processor.
It then enables the particular channel.

• In response to HRQ signal, the processor will relinquishes the
system busses in the next cycle and will send a Hold Acknowledge
(HLDA) signal to the 8257.

• In response to this HLDA signal from the microprocessor, the

DMA controller will generate (DACK) DMA acknowledge signal
(active low) through its Control Logic block as an
acknowledgement to the requesting peripheral. At the same time
the 8257 enables the Address Enable (AEN) signal which disables
systems address lines (A0-A7). These address lines becomes the
output lines. The low order byte of the memory location is placed
of these lines. The address strobe (ADSTB) signal goes high when
AEN is high and places higher byte of the memory location
generated by 8212 on the address bus A15-A8.

• The data transfer continues till the terminal count is reached.

12.3 DMA INTERFACING CIRCUIT
Figure 12.10 shows the interfacing circuit of DMA controller 8257. In this circuit

 374

Fig. 12.10

 375

8212 is used to de-multiplex the 8085 bus to generate the low order address bus (A7-A0).
The 8257 has eight address lines, but requires sixteen address lines to address a memory
location. The additional eight lines are generated by using the signal ADSTB to strobe a
high order memory address into the 8212 from the data bus. This IC is not related to 8085

not to the DMA controller 8257, but only 1DS is controlled by AEN signal of 8257. The

IC 74LS257 is a multiplexer which is used to generate control signals. The OE terminal
of this multiplexer is also controlled by AEN. The AEN output signal is used to disable
(float) the system bus and control bus. This signal is also necessary to switch the 8257
from the slave mode to the master mode. The port addresses of the registers of 8257 are
used as discussed above and circuit for the same is given in figure 12.9. The port
addressed may be chosen as desired. The second 8212 connected to the DMA controller
accepts the data during the DMA operation.

Example 12.1 Initialize 8257 DMA controller to transfer 2K bytes of data stored in
memory locations starting at 2101 H to floppy disk connected to the channel 1 of 8257.
Assume that the address of the Mode Set Register is 78 H. The addresses of DMA address
register for channel 1 and the Terminal Count Register are 72 H and 73 H respectively.

Solution. The format for Mode Set register is given below:

D7 D6 D5 D4 D3 D1 D0

 0 1 0 0 0 1 0 = 42 H

 Enable Enable CH 1

 TC stop

Format for Terminal Count Register is given below:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

 = 87FF H

D15 and D14 as 10 indicate it is memory read operation and D10 to D0 as
11111111111 represents 2 K bytes of data to be transferred to the floppy.

For the initialization of 8257, following steps are to be followed:

� Load mode word in the Mode Set Register.

� Load counts to the terminal count register first LS byte and then
MS byte.

� Load starting address of the memory location, from where the data
is to be transferred to the floppy disk, to the DMA address register.

The initialization program is therefore given as:

MVI A, 42 H ; Load mode word in the Mode Set Register.

 OUT 78 H ; Address of the Mode Set Register.

MVI A, FF H ; Load LS byte of the count in the terminal
count register.

 OUT 73 H ; Address of TC register.

 376

MVI A, 87 H ; Load MS byte of the count in the terminal
count register.

 OUT 73 H ; Address of TC register.

MVI A, 00 H ; Load the LS byte of the starting address of
the memory location from where the data
is to be transferred.

 OUT 72 H ; Address of the DMA address register.

MVI A, 21 H ; Load the MS byte of the starting address of
the memory location.

OUT 72 H ; Address of the DMA address register.

Example 12.2 Initialize 8257 DMA controller to transfer 512 bytes of data from a
peripheral to memory locations starting at 3000 H through channel 0. Assume that the
address of the Mode Set Register is 28 H. Assume the addresses of DMA address register
for channel 0 and the Terminal Count Register are 20 H and 21 H respectively.

Solution. The format for Mode Set register is given below:

D7 D6 D5 D4 D3 D1 D0

 0 1 0 0 0 0 1 = 41 H

 Enable Enable CH 0

 TC stop

Format for Terminal Count Register is given below:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1

 = 41FF H

D15 and D14 as 01 indicate it is memory write operation and D8 to D0 as
111111111 represents 512 bytes of data to be transferred.

The initialization program is therefore given as:

 MVI A, 41 H ; Load mode word in the Mode Set Register.

 OUT 28 H ; Address of the Mode Set Register.

MVI A, FF H ; Load LS byte of the count in the terminal
count register.

 OUT 21 H ; Address of TC register.

MVI A, 41 H ; Load MS byte of the count in the terminal
count register.

 OUT 21 H ; Address of TC register.

MVI A, 00 H ; Load the LS byte of the starting address of
the memory location from where the data
is to be transferred.

 OUT 20 H ; Address of the DMA address register.

MVI A, 30 H ; Load the MS byte of the starting address of
the memory location.

 377

OUT 20 H ; Address of the DMA address register.

Example 12.3 An I/O device which is associated with channel 2 of 8257 DMA
controller is to be periodically refreshed with 4K bytes of data starting from 2200 H
locations. Write the initialization routine for the DMA controller to be operated with
auto-load and extended write operations. The addresses of DMA registers and terminal
count registers of all the four channels along with the address of the mode set registers
are given in table 12.3.

Solution. The format for Mode Set register is given below:

D7 D6 D5 D6 D5 D4 D3 D1 D0

 1 0 1 0 0 1 1 0 0 = A6 H

 D7 = 1 indicates that the auto load enabled, and

 D5 = 1 indicates the extended write enabled.

 D4 and D3 = 11, indicate that the channel 2 and channel 3 are enabled, which are
needed for the auto load and extended write mode.

Format for Terminal Count Register is given below:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

 = 8FFF H

D15 and D14 as 10 indicate it is memory read operation and D11 to D0 as
111111111111 represents 4096 (4K) bytes of data to be transferred.

In this case the starting address of the memory location is to be loaded to both
DMA address registers of both channel 2 and channel 3 for auto load and extended write
mode.

The initialization program is therefore given as:

 MVI A, A6 H ; Load mode word in the Mode Set Register.

 OUT 78 H ; Address of the Mode Set Register.

MVI A, FF H ; Load LS byte of the count in the terminal
count register of channel 2.

 OUT 75 H ; Address of TC register of channel 2.

MVI A, 8F H ; Load MS byte of the count in the terminal
count register of channel 2.

 OUT 75 H ; Address of TC register of channel 2.

MVI A, FF H ; Load MS byte of the count in the terminal
count register of channel 3.

 OUT 77 H ; Address of TC register of channel 3.

MVI A, 8F H ; Load MS byte of the count in the terminal
count register of channel 3.

 OUT 77 H ; Address of TC register of channel 3.

MVI A, 00 H ; Load the LS byte of the starting address of
the memory location.

 378

 OUT 74 H ; Address of the DMA address register
 channel 2.

MVI A, 22 H ; Load the MS byte of the starting address of
the memory location.

OUT 74 H ; Address of the DMA address register ch.2.

MVI A, 00 H ; Load the LS byte of the starting address of
the memory location.

 OUT 76 H ; Address of the DMA address register
 channel 3.

MVI A, 22 H ; Load the MS byte of the starting address of
the memory location.

OUT 76 H ; Address of the DMA address register ch.3.

 PROBLEMS

1. What do you understand by Direct Memory Access? What is the use of DMA
controller for the data transfer from memory to I/O devices or vice-versa?

2. Draw the block diagram of 8257 DMA controller. Discuss the functions of it
blocks.

3. How many I/O devices can be connected with the 8257? How many register are
there in 8257? Discuss these registers.

4. Give the format of terminal count register. Discuss the functions of the bits of TC
register.

5. What is the function of the Read/ Write Logic block of the 8257 DMA controller?

6. Mention the function of each signal of the control logic block of 8257 DMA
controller.

7. What is the function of Mode Set Register of the 8257? How 8257 is programmed
in Auto Load option?

8. How 8257 is programmed in Rotating Priority option?

9. Give and discuss the format of the Status Word Register of 8257.

10. How the programming of 8257 DMA controller is done?

11. Give the address decoder circuit for addresses of various registers as C0 H to C8

H. The decoder circuit enables chip select terminal (CS) of the 8257.

12. What steps are carried out for initialization of 8257?

13. Draw and discuss the interfacing circuit of 8257 with 8085A microprocessor.

14. Initialize 8257 DMA controller to transfer 4K bytes of data stored in memory
locations starting at 2501 H to an output device connected to the channel 2 of
8257. Assume that the address of the Mode Set Register is C8 H. The addresses of
DMA address register for channel 2 and the Terminal Count Register are C4 H
and C5 H respectively.

 379

15. Initialize 8257 DMA controller to transfer 200 bytes of data stored in memory
locations starting at 2000 H to an output device connected to the channel 0 of
8257. Assume that the address of the Mode Set Register is 28 H. The addresses of
DMA address register for channel 0 and the Terminal Count Register are 20 H
and 21 H respectively.

16. The DMA controller 8257 should be initialized as follows:

DMA channel 2 must be enabled and terminal count stop bit is to be
enabled.

2500 H must be written in DMA address register channel 2.

500 (decimal) must be written in Terminal counter of channel 2 and D14
and D15 are set for memory read operation.

Assume the address of the DMA address register for channel 2 is 94 H and the
terminal count is 95 H; and the address of the mode set register is 98 H.

17. Initialize 8257 DMA controller to transfer 8K bytes of data from a peripheral to
memory locations starting at 21FF H through channel 1. Assume that the address
of the Mode Set Register is 98 H. Assume the addresses of DMA address register
for channel 1 and the Terminal Count Register are 92 H and 93 H respectively.

18. An I/O device which is associated with channel 2 of 8257 DMA controller is to be
periodically refreshed with 1K bytes of data starting from 2500 H locations. Write
the initialization routine for the DMA controller to be operated with auto-load and
extended write operations. The addresses of DMA registers and terminal count
registers of all the four channels are C0 H to C7 H; and the address of the mode
set register is CH H.

13
Interfacing Data converters:

A/D and D/A Converters

Sometimes the information available for processing in microprocessor based

system is in digital form while in most of the cases it is available in analog form. For
example, the outputs of digital voltmeter, digital frequency meter, digital clock and
calculators etc. are available in digital form but most physical quantities such as
temperature, pressure, light, voltage and current etc. gives information in analog form. It
is often necessary to convert information in one form to another form for the purpose of
interfacing with the system. For example, to design the microprocessor base temperature
controller, the temperature of the device obtained from the transducer such as
thermocouple or thermister is first converted to the digital form using D/A converter then
interfaced with the microprocessor. Similarly, for plotting the output of a system on a
curve plotter or X-Y recorder, the digital output is first converted to analog output with
the help of digital to analog converter, the output of which drives a servomotor. So
analog to digital (A/D) converters or digital to analog (D/A) converters are the interfacing
devices with the system. In this chapter various types of A/D and D/A converters and
their interfacing with the microprocessor will be discussed.

13.1 DIGITAL TO ANALOG CONVERTER
 Digital to Analog (D/A) converter converts the digital information into analog
form. The input may be of n-bit long having different voltage levels. So in the D/A
converters, some method is to be used which can convert this voltage level of n-bits to its
equivalent analog form. This can be accomplished by using different resistive networks.
Following two types of resistive networks are basically used for this purpose:

1. Resistive Divider Network or weighted resistor network
2. Binary Ladder Network or R-2R network

 The converter which comprises the resistive divider network is known as
Resistive Divider D/A converter and the D/A converter which comprises the binary
ladder network is known as Binary Ladder D/A converter. These converters will now be
discussed.

13.1.1 Resistive Divider D/A converter
 As discussed above, the resistive divider D/A converter consists of a resistive
divider network, so before discussing the complete circuit diagram of a resistive divider
D/A converter, it is better to understand the working of resistive divider network. The
resistive divider network changes each of the n-bit digital level into its equivalent analog

 381

output. The discussion will now be made for the method of converting the n-bit digital
input to its equivalent analog signal. A weight is assigned to each bit of n-bit digital input
in such a way that the sum of weight must be equal to 1. In general, the binary weight

assigned to LSB in an n-bit digital input is
12

1

−n
. The weights assigned to 2nd LSB, 3rd

LSB, 4th LSB and so on are obtained by multiplying the weights of LSB to 21(=2), 22
(=4), 23 (=8)…. respectively. For instance, weights assigned to different bits of 4-bit
binary input b3 b2 b1 b0 are:

 Weight assigned to LSB (b0 bit) is
15

1

12

2
4

0

=
−

 Weight assigned to 2nd LSB (b1 bit) is
15

2

12

2
4

1

=
−

 Weight assigned to 3rd LSB (b2 bit) is
15

4

12

2
4

2

=
−

Weight assigned to MSB (b3 bit) is
15

8

12

2
4

3

=
−

The sum of weights assigned to each bit of 4-bit digital input is 1 as 1
15

8

15

4

15

2

15

1 =+++ .

 In a four bit binary system there will be 16 different possible input combinations,
corresponding to which the analog signal will be obtained if it is assumed that a certain
reference voltage (VREF) is applied whenever there is a 1 in binary bit. In a 4 bit digital
system if VREF =15 volts, the analog voltage available for each combination of binary
input should be as given in table 13.1.
 Table 13.1

b3 b2 b1 b0 Weight Analog Voltage

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0/15
1/15
2/15
3/15
4/15
5/15
6/15
7/15
8/15
9/15
10/15
11/15
12/15
13/15
14/15
15/15

(0/15)VREF = 0 Volt
(1/15) VREF = 1 Volt
(2/15) VREF = 2 Volt
(3/15) VREF = 3 Volt
(4/15) VREF = 4 Volt
(5/15) VREF = 5 Volt
(6/15) VREF = 6 Volt
(7/15) VREF = 7 Volt
(8/15) VREF = 8 Volt
(9/15) VREF = 9 Volt

(10/15) VREF = 10 Volt
(11/15) VREF = 11 Volt
(12/15) VREF = 12 Volt
(13/15) VREF = 13 Volt
(14/15) VREF = 14 Volt
(15/15) VREF = 15 Volt

 So the analog voltage for binary word = (weight of the binary word) x VREF

 382

 It may be noted from this table 13.1 that the analog voltage corresponding to
binary equivalent is discrete step value as given in figure 13.1. The discrete step is of 1
volt if VREF is assumed to be 15 volts in a four bit digital input. The step voltage (analog)
will be dependent on the reference voltage. There will, however, be 2n steps in n-bit
digital system.

Fig. 13.1
 Resistive divider network is used for converting digital inputs to analog outputs.
The network for 6 bit binary system shown in figure 13.2 is known as the weighted
network, as the resistors are weighted inversely with their current values. The input
binary bits are b5 b4 b3 b2 b1 b0 where b0 is the LSB and b5 is MSB. These binary bits may
be logic 0 or 1. Logic 0 may further be assumed as 0 volt and logic 1 as VREF. So V0, V1,
V2, V3, V4 and V5 are the input voltage levels which may be 0 volt or VREF depending on
the binary bits. The resistors R0, R1, R2, R3, R4 and R5 are connected to bits b0, b1, b2 , b3,
b4, b5 respectively. It may be noted from this network that the resistor connected to the
binary bit is half the value of resistor connected to the previous (lower) bit. Hence this
network also called as the resistive divider network. Let RL is the load resistance which is
supposed to very high i.e. very much higher than the resistor R0.

 383

Fig. 13.2

 Now the voltage VL across the load resistance RL can be obtained by using
Millman’s theorem. This theorem states that the voltage appearing at any node in a
resistive network is equal to the sum of all the currents that would enter to the node
divided by the sum of conductances connected to that node.

 Thus

012345

0

0

1

1

2

2

3

3

4

4

5

5

111111

RRRRRR

R

V

R

V

R

V

R

V

R

V

R

V

VL

+++++

+++++
=

RRRRRR

R

V

R

V

R

V

R

V

R

V

R

V

32

1

16

1

8

1

4

1

2

11
3216842

012345

+++++

+++++
=

[]

[]
32

12481632
32

2481632 012345

+++++

+++++

=

VVVVVV

63

3216842 543210 VVVVVV +++++
=

)222222(
)12(

1
5

5
4

4
3

3
2

2
1

1
0

0
6

VVVVVV +++++
−

= …(13.1)

 In this equation (13.1), the load resistance RL is not considered as it is assumed to
be large enough offering low (almost zero) conductance. From this equation it is clear
that if the input binary bits are all 1 (in a six bit system) and reference voltage VREF = 6.4
volts (say), the VL is given by:

 voltsVxV REFL 4.663
63

1 ==

In general, the equation (13.1) for output voltage of n-bit binary digits is given as:

 384

)2.........22222(
)12(

1
1

1
4

4
3

3
2

2
1

1
0

0
−

−+++++
−

= n
n

nL VVVVVVV

 …(13.2)

The output of this network is as per our requirement, and is proportional to the
input binary data.

Using the network discussed above, a D/A converter (called binary weighted D/A
converter or Resistive divider D/A converter) can be designed as given below. The
schematic diagram of 6-bit D/A converter is shown in figure 13.3. It consists of the
following major parts:

(i) n switches, one for each bit applied to the input,
(ii) A binary weighted resistive network which changes each of the digital

level into equivalent binary weighted voltage or current.
(iii) A reference voltage source VREF.
(iv) A summing amplifier that adds the currents flowing in the resistors of the

network to develop a signal that is proportional to the digital input.

 Fig. 13.3
 In this circuit, one switch is connected to each binary bit. In fact these switches
are such that when the binary bit is 0, the corresponding resistor of the network gets
connected to the ground potential and when the binary bit is 1, the corresponding resistor
of the network gets connected to the VREF volt. The current flowing through any branch
of the network will be the logical voltage (0volt or VREF volts) divided by the
corresponding resistor.
 So the total current I will be given by (ref. fig. 11.3):

0

0

1

1

2

2

3

3

4

4

5

5

R

V

R

V

R

V

R

V

R

V

R

V
I +++++=

R

V

R

V

R

V

R

V

R

V

R

V

3216842
012345 +++++=

 Since the voltages V5 through V0 are either 0 or VREF volts depending upon the bit
value, so it is customary to take common voltage VREF and bits are kept in place of
voltages. So V5 is replaced by VREF.b5, V4 by VREF.b4 and so on; the bits b5, b4, b3 etc
will be 0 or 1. The current I may, therefore, be represented as follows:

 385

 []012345 2481632
32

bbbbbb
R

V
I REF +++++=

 []5
5

4
4

3
3

2
2

1
1

0
0

5
222222

.2
bbbbbb

R

VREF +++++=

 This is the equation of current I for 6 input bits. The general equation of current I
for n input bits is given by:

 []1
1

4
4

3
3

2
2

1
1

0
0

1
2.....22222

.2 −
−

− +++++= n
n

n
REF bbbbbb

R

V
I

 …(13.3)
 The voltage at the output of operational amplifier will be given by:
 IRV fout .−=

 The resistor Rf is the feed back resistance in the operational amplifier. The output
voltage of the operational amplifier is proportional to input binary data.
 The switches connected in figure 13.3 can be replaced by the electronic switches
(transistorized) as shown in figure 13.4. When the bit is at logic 1, the corresponding
transistor conducts and the current flows through the collector resistor as required; and
when the bit is at logic 0 the transistor goes into cutoff and no collector current flows.

 Fig. 13.4
 This D/A converter is economical and simple method to design but suffers the
following serious drawbacks:

1. The network in this D/A converter is constructed using the precession
resistors and resistors have different values. So it is difficult in practice to
choose the resistors with accuracy and stability.

2. When the number of bits in the network is large, then the current from the
source will be large enough. The current in the MSB branch (resistor) will
be much larger than LSB branch. In a 10 bit D/A converter, the current in
MSB branch will be 512 times larger than the MSB branch.

13.1.2 Binary Ladder D/A Converter
 A more commonly used D/A converter is a binary ladder D/A converter, which
removes the drawbacks discussed in resistive divider D/A converter. This type of D/A
converter contains an R-2R ladder network. The R-2R resistive ladder network will now
be discussed, which gives the output a weighted sum of digital inputs. Such a ladder

 386

network for 4-bit input is shown in figure 13.5. This network is constructed having only
two resistor values i.e. R and 2R. In this network b0, b1, b2 and b3 are the input binary bits
and b0 is the LSB and b3 is MSB. Any of these bits will be at the ground potential when
the corresponding bit is at logic 0 or at the reference potential (VREF) when the input bit is
at logic 1.

Fig. 13.5

To examine the behaviour of this network, it is assumed that the bit b3 is at logic 1
(or VREF potential) as shown in figure 13.6(a). The output voltage corresponding to MSB
may be calculated as follows. The equivalent resistance at the point X is the parallel
combination of two resistances each having the value of 2R. So the equivalent resistance
looking at point X and ground is R as shown in figure 13.6(b). At the point Y again there
is a parallel combination of two 2R resistances; the equivalent resistance looking at the
point Y and ground is R as shown in figure 13.6(c). Similarly, one can find the equivalent
resistance looking at the point Z and ground is R as shown in figure 13.6(d).

 (a)

(b)

 387

(c)

(d)

Fig. 13.6
From figure 13.6(d) it is clear that the resistance looking at the point W and

ground is 2R, and the resistance looking towards the bit b3 is also 2R. Thus the output
voltage at the point W due to bit b3 (MSB) assumed at VREF potential is given by:

2)22(

2
0

REFREF V

RR

RxV
V =

+
=

 The output voltage V0 due to the binary input 1000 (only MSB is high) is half of
the reference voltage having Thevenis’s resistance R in series with it. Similarly one can
calculate the output voltage due to the binary input 0100 (i.e. second MSB); the network
for this case is shown in figure 13.7(a). The resistance looking at the point Y and ground
is R as shown in figure 13.7(b). The resistance between the point Z and ground is 2R. The
voltage at point Z and ground is (VREF/ 2) have a Thevenin’s resistance R, as shown in
figure 13.7(c).

(a)

 388

(b)

 (c)

Fig. 13.7

From this figure the output voltage V0 at the point W is given by:

4)22(

2)2/(
0

REFREF V

RR

RxV
V =

+
=

 So the output voltage due to second MSB (or for binary input 0100) is
4
REFV

with

Thevenin’s resistance R in series with it.
It can further be shown that the output due to third MSB (for binary input 0010)

is
8
REFV

. And for LSB (0001 binary input) the output is
16
REFV

. Each voltage source will

have Thevenin’s resistance R in series with the source. The total output voltage in analog
form, due to all the inputs as 1 (for 1111) can easily be found by adding the outputs
obtained for each bit as given below:

168420
REFREFREFREF VVVV

V +++=

 It may be noted that
2
REFV

 is the voltage due to MSB,
4
REFV

due to second MSB,

8
REFV

 for third MSB and
16
REFV

 for LSB. So to distinguish these voltages it is useful to

write the bit positions along with VREF as given below. So if the bit is 0 the voltage
corresponding to that bit will be zero otherwise the voltage as discussed above.

16842

0123
0

xbVxbVxbVxbV
V REFREFREFREF +++=

 []0123 1248
16

xbxbxbxb
VREF +++=

 389

 []3
3

2
2

1
1

0
0

4
2222

2
xbxbxbxb

VREF +++= …(13.4)

 The equation (13.4) is the equation for voltage at the output of 4 bit binary ladder
network. A general equation for the output of n-bit binary data can be given as follows:

 []1
1

3
3

2
2

1
1

0
0

0 2.....2222
2 −

−+++++= n
n

n
REF xbxbxbxbxb

V
V …(13.5)

The output of this network is proportional to the input binary data. So using this

R-2R ladder network, a D/A converter (called binary ladder D/A converter) can be
designed as given below. The schematic diagram of 4-bit D/A converter is shown in
figure 13.8. It consists of the following major parts.

(i) n switches, one for each bit applied to the input,
(ii) A binary ladder network which changes each of the digital level into

equivalent binary weighted voltage or current.
(iii) A reference voltage source VREF.
(iv) A summing amplifier that adds the currents flowing in the resistors of the

network to develop a signal that is proportional to the digital input.

Fig. 13.8
 The output voltage Vout of this D/A converter due to MSB (1000 binary input)
will be calculated as given below:
 The voltage at the point W due to MSB is VREF / 2 having a Thevenin’s resistance
R in series with it as discussed above and is shown in figure 13.9

 Fig. 13.9
 From this figure, the current I is given by:

 390

)
3

1
(

2 R

V
I REF=

and the output voltage Vout is given by:
 fRIVout .−=

2

3).
3

1
(

2
REFREF V

R
R

V
−=−=

 The output voltage is the same as calculated in equation 13.5, with the difference
that it has a negative value because the operational amplifier is used in inverting
configuration.
 Note that the resistors in the ladder network are either R or 2R. It is the ratio of
resistances matters rather than the absolute value of resistances. Further the resistors do
not cover a wide range of magnitude; it is, therefore, practically possible to get the
precision in the ratio of their magnitudes. The temperature coefficients of these
resistances can easily match. Because of these advantages, the ladder network is widely
used in D/A converters.

13.2 PERFORMANCE CRITERIA FOR D/A CONVERTER
The D/A converters are available in the form of ICs with different specifications

for their performances. So before discussing D/A converter ICs it will be better to discuss
first the characteristics of the converters specified by the manufacturers. These
specifications include:

1. Resolution
2. Accuracy
3. Monotonicity
4. Settling time

1. Resolution: As discussed above, the analog output of D/A converter is proportional
to the digital input (binary data), so a perfect staircase is obtained if there is an LSB
increment. The resolution is, therefore, a measure of quality of D/A converter, which is
defined as the ratio of the LSB increment to the maximum output. For an n-bit D/A
converter the resolution is given by:
 The change in output due to LSB increment for n-bit digital input (Step size)
 = Full scale output / No. of steps

 where)12(−n is the number of steps for n-bit D/A converter.

The step size for a 10 bit D/A converter, having full scale output voltage as 10

volts, is given by mV8.9
1023

10

12

10
10

==
−

=

And % Resolution = 0.0978%

 391

2. Accuracy: Accuracy of a D/A converter is the closeness of the output analog
voltage to the expected theoretical output. In a linear variation of analog output with
digital input, the relative accuracy is the maximum deviation of the D/A output compared
with the linear behaviour. It is expressed as a percent of a full-scale or maximum output
voltage. For example, if a converter has a full scale output of 10 V and the accuracy is

%1.0± , then the maximum error for any output voltage is (10V)(0.001) = 10 mV.
Ideally, the accuracy should be at most ± ½ of an LSB.

 For an 8 bit D/A converter, one LSB is %39.00.0039
256

1 == of full scale. The

accuracy should be approximately0.2%± .

3. Monotonicity: A D/A converter is said to be monotonic if it gives an analog
output voltage which increases regularly and linearly with increase in input digital signal.
Such a quality of the converter is called as monotonicity. In order to demonstrate
monotonicity of a D/A converter, a counter output is given as digital input to a D/A
converter and the analog output is displayed on the CRO. Monotonicity then requires that
the output waveform should be a perfect staircase waveform with steps equally spaced
and of same magnitude. If the steps are missing or have varying magnitude, the D/A
converter is defective.

4. Settling Time: After the application of digital input to a D/A converter, it takes
about few nanoseconds to microseconds to produce the correct output. So the settling
time is defined as the time the converter takes to give an output to settle within ± ½ LSB
of its final value. For example, if a D/A converter has a resolution of 10mV, the settling
time is the measure of the time the converter takes to settle with in ± 5mV of its final
value. Figure 13.10 illustrates the settling time in a D/A converter. The settling time is
important because it places a limit on how fast one can change the digital input. The
settling time depends on the stray capacitance, saturation delay time, and other factors.

Fig. 13.10

13.3 D/A CONVERTER IC 0808
 There are many commercially available D/A converter ICs. The IC 0808 is the
most popular, inexpensive and widely used 8 bit D/A converter. It contains a reference
current source, an R-2R binary ladder network and 8 transistor switches to steer the
binary currents to the network. Figure 13.11 shows the pin configuration of this D/A
converter IC 0808.

 392

Fig. 13.11

 In this IC, pins 5 through 12 are the 8 bit input data, so should be connected to
input data bits. Pin 15 is to be connected to ground through a resistance. Pin 13 is to be
connected to +5 volt supply. Pin 3 (VEE) is to be connected to – 15 volts. Pin 4 is the
output current of the ladder network should be connected to the operational amplifier. Pin
2 is the ground pin. The pin 16 is the frequency compensation pin, a capacitor between
pin 16 and 3 is to be connected for this purpose.
 A circuit diagram to get the analog output voltage corresponding to 8 bit digital
input is shown in figure 13.12. A +5 V supply sets up a reference current of 2mA for the
ladder. The output current Iout drives the operational amplifier to give final output
between 0 and 2 volts (approximately) for the 8 bit digital input.

 Fig. 13.12
 There are many other commercially available D/A converter as given below:
 DAC 0800 – A monolithic 8-bit high speed current output DAC.
 DAC 0806 and DAC 0807 – 8 bit monolithic D/A converters.

DAC 1000 and DAC 1008 – 10 bit microprocessor compatible advanced CMOS
D/A converters.

 DAC 1202 and DAC 1203 – Three-digit (BCD) D/A converter.
13.4 INTERFACING OF D/A CONVERTER
 For the interfacing of 0808 D/A converter with the microprocessor 8085A, the
circuit shown in figure 13.12 may be connected to the system through the 8255 PPI
(Programmable Peripheral Interface as shown in figure 13.13.

 393

 394

 Fig. 13.13

 395

 In this circuit feedback resistor Rf is considered as 5 KΩ and the reference voltage
is taken as VREF = 10 V, so that we get the output current OutI as:

 []1
1

3
3

2
2

1
1

0
0 2.....2222

2 −
−+++++= n

n

n
REF

Out xbxbxbxbxb
I

I

 Here the value of n = 8 as it is 8 bit D/A converter.

 So OutI = []1
1

3
3

2
2

1
1

0
0 2.....2222

256 −
−+++++ n

nREF xbxbxbxbxb
I

 and mA
K

V

R

V
I

REF

REF
REF 2

5

10 =
Ω

==

 and [] fn
n

OUT xRxbxbxbxbxb
mA

V 1
1

3
3

2
2

1
1

0
0 2.....2222

256

2
−

−+++++=

 = []1
1

3
3

2
2

1
1

0
0 2.....2222

256

10
−

−+++++ n
n xbxbxbxbxb

 If all the input bits (b0 – b7) are 1 (FF H), then the output voltage (known as full
scale output voltage) is given by:

 VxVOUT 1010
256

255 ≈=

 The output voltage corresponding to the input 1000 0000 (80 H) is given by:

 VxVOUT 510
256

128 ==

 So we have the linear output corresponding to the binary inputs i.e.
 Digital Input Output Voltage
 00 H 0 V
 80 H 5 V
 FF H 10 V
 These input output levels may be verified, if the following three programs are
executed and the voltages at the outputs in the three cases are measured.
Program 1:

 MVI A, 80 H ; 8255 is initialized with all the ports as
output port.

 OUT 03 H ; Control word is written in control word
register.

 MVI A, 00 H ; Get A = 00 H, so that 00 H is applied to the
input of D/A converter.

 OUT 00 H ; 00 H is available at the Port A of 8255 so
that it is applied to the input of D/A
converter.

 HLT ; Stop processing.
 After execution of this program, if the voltage at the output of the circuit of D/A
converter is measured we get 0 V. It verifies that 00 H is applied at the input of the
converter, we get 0 V.
Program 2:

 MVI A, 80 H ; 8255 is initialized with all the ports as
output port.

 396

 OUT 03 H ; Control word is written in control word
register.

 MVI A, 80 H ; Get A = 80 H, so that 80 H is applied to the
input of D/A converter.

OUT 00 H ; 80 H is available at the Port A of 8255 so
that it is applied to the input of D/A
converter.

 HLT ; Stop processing.
 After execution of this program, if the voltage at the output of the circuit of D/A
converter is measured we get 5 V. It verifies that 80 H is applied at the input of the
converter, we get 5 V.

Program 3:

 MVI A, 80 H ; 8255 is initialized with all the ports as
output port.

 OUT 03 H ; Control word is written in control word
register.

 MVI A, FF H ; Get A = FF H, so that FF H is applied to
the input of D/A converter.

OUT 00 H ; FF H is available at the Port A of 8255 so
that it is applied to the input of D/A
converter.

 HLT ; Stop processing.
 After execution of this program, if the voltage at the output of the circuit of D/A
converter is measured we get 10 V. It verifies that FF H is applied at the input of the
converter, we get 10 V.
Example 13.1. The input bits of the D/A converter is connected to the output pins of Port
A of 8255, which is already connected with the microprocessor (ref. fig.13.13). Write a
program to generate stair case voltage with ten steps. It should have the constant pulse
duration.
Solution. There should be 10 steps for the stair case voltage to be generated with the
D/A converter. So the height of the stair case should be approximately 1 volt. Since FF H
gives 10 volts, so 19 H should be decreased each time in 10 go.
 When 19 H is subtracted from FF H in the first go we get E6 H. The output
voltage corresponding to E6 H is given by:

 VOut = 984.810
256

230 =x volts

 Therefore, the subtraction of 19 H from FF H gives a decrement of 1 volt at the
output. The program for the generation of stair voltage is given as:
PROGRAM
Label Mnemonics Operand Comments

MVI A, 80 H ; Initialize 8255-I to work all the
ports as output ports.

 OUT 03 H ; Write the control word (80 H) in
the control word register of 8255-I.

START MVI A, FF H ; Load FF H to accumulator.

 397

 OUT 00 H ; Send FF H (10 V) to PA0.
 CALL DELAY ; Jump to delay subroutine to

introduce a delay of constant pulse
width.

 MVI B, 00 H ; Use B-register as counter for 10
steps.

REPEAT SBI 19 H ; Subtract 19 H to calculate next
weight for the output of D/A
converter.

 OUT 00 H ; Send the data to the output.
 INR B ; Increment B-register.
 CPI 0A H ; If 10 steps complete then
 JZ END ; Jump to repeat the process.
 PUSH PSW ; Save PSW
 PUSH B ; Save B-C register pair.
 CALL DELAY ; Jump to delay subroutine to

introduce a delay of constant pulse
width.

 POP B ; Restore the contents of B-C pair.
 POP PSW ; Restore the PSW.
 JUMP REPEAT ; Jump to repeat to output for the

next weight.
END MVI A, 00 H ; Store 00 H to the accumulator.
 OUT 00 H ; Outputs for 00 H.
 CALL DELAY ; Jump to delay subroutine to

introduce a delay of constant pulse
width.

 JMP START ; Repeat for next cycle.
SUBROUTINE PROGRAM:
 Label Mnemonics Operand Comments
 DELAY LXI D, 0020 H ; Loads DE register pair with a 16-

bit number.
 LOOP1 DCX D ; Decrements DE register pair by 1.
 MOV A, E ; Moves the contents of E register to

accumulator.
 ORA D ; ORing of the contents of D and E

registers are performed to set the
zero flag.

 JNZ LOOP1 ; If result is not zero than jump to
LOOP1.

 RET ; Go back to main program.
 In the subroutine program, DE register pair may be loaded with any other 16-bit
number to change the pulse width. The exact time of the pulse width may be calculated as
discussed in the delay programs. After the execution of this program, the output may be
seen on the CRO. The output will be stair case wave.

 398

Example 13.2. Write a program to generate square wave of 1 KHz frequency with a
peak voltage of 2.5 volts. Use D/A converter (ref. fig. 13.13) for this purpose. The square
wave should be available at the output of the converter.
Solution. It is required to generate square wave of 1 KHz frequency, the time period of
such wave should be 1msec. During 1 msec the output should be high for 0.5 msec and
low for the same time. Time delay can be introduced by using the following subroutine
program:
SUBROUTINE PROGRAM:
 Label Mnemonics Operand Comments

DELAY LXI D, 0040 H ;Loads DE register pair
with a 16-bit number.

LOOP DCX D ;Decrements DE register
pair by one.

 MOV A, E ;Moves the contents of E
register to accumulator.

 ORA D ;ORing of the contents of
D and E registers are
performed to set the zero
flag.

 JNZ LOOP ;If result 0≠ jump to
loop

 RET ;Go back to main
program.

 Total T-states used for the above sub routine program are given as:
 Mnemonics T-states
 LXI 10
 DCX 5
 MOV 5
 ORA 4
 JNZ LOOP 10/7
 RET 10
 24 T-states are used for the inner loop and 10+7+10 = 27 T-states are used for
outer loop.
 In this program the execution of loop is for 64 times (as 0040 H = 6410). The
condition for the check of zero flag can not be applied just after DCX instruction, since
no flag gets affected with this instruction. So to check the zero flag ORA instruction
affect the zero flag. The zero flag will be set if the contents of both D and E registers are
zero.
 The time delay introduced by the inner loop is:
 TLOOP = 64 x 24 x Time of one T-state.
 If the system clock frequency is 3 MHz, then

 TLOOP = 64 x 24 x
3

1
µsec

 = 512 µsec
 = 0.5 msec.
 Delay introduced for outside loop is:

 399

 Tout = 27x1x
3

1
µsec

 = 9 µsec
 So the total time delay introduced by the above subroutine program is given by:

 TDelay = 0.5 msec + 9 µsec
 5.0≈ msec
 Further, it is required that the voltage level of the output should be 2.5 volts, for
which the digital input should be 40 H as 80 H gives 5 volts. So the main program is
given as:
MAIN PROGRAM
Label Mnemonics Operand Comments

MVI A, 80 H ; Initialize 8255-I to work all the
ports as output ports.

 OUT 03 H ; Write the control word (80 H) in
the control word register of 8255-I.

START MVI A, 00 H ; Load 00 H to accumulator.
 OUT 00 H ; Send 00 H (00 V) to PA0.
 PUSH PSW ; Save PSW
 CALL DELAY ; Jump to delay subroutine to

introduce a delay of 0.5msec.
 POP PSW ; Restore the PSW.
 MVI A, 40 H ; Store 40 H to the accumulator.
 OUT 00 H ; Outputs for 40 H.
 PUSH PSW ; Save PSW
 CALL DELAY ; Jump to delay subroutine to

introduce a delay of 0.5msec.
 POP PSW ; Restore the PSW.
 JMP START ; Repeat the process for next cycle.
 During the execution of this program the wave shape at output of the D/A converter
can be checked. It will be a square wave of 1 KHz frequency.
 Example 13.3. Write a program to generate a triangular wave form using 8255 and
DAC 0808 (ref. fig. 13.13).
Solution. The program for the same is given below:
MAIN PROGRAM
Label Mnemonics Operand Comments

MVI A, 80 H ; Initialize 8255-I to work all the
ports as output ports.

 OUT 03 H ; Write the control word (80 H) in
the control word register of 8255-I.

LOOP MVI A, FF H ; Load FF H to accumulator.
 OUT 00 H ; Send FF H (10 V) to PA0.
 INR A ; Increment accumulator.
 OUT 00 H ; Output corresponding to this

weight is available (i.e. increasing

 400

voltage is available at the output of
the converter).

 CPI FF H ; Compare if output has become 10
Volts.

 JZ LOOP 1 ; If yes go to LOOP 1.
 JMP LOOP ; If no go to LOOP.
LOOP 1 DCR A ; Decrement accumulator.
 OUT 00 H ; Outputs for decrement data.
 JZ LOOP ; If accumulator content becomes 0,

go to LOOP.
 JMP LOOP ; Else to LOOP.
 During the execution of this program the wave shape at output of the D/A converter
can be checked. It will be triangular wave.

13.5 MICROPROCESSOR COMPATIBLE D/A CONVERTER
 Now a days microprocessor compatible D/A converters are also available, which
are designed for the purpose of directly interfacing with the microprocessor without the
use of external latch. Among such converters, AD558 is very simple, inexpensive and
commonly used D/A converter to be connected directly to the microprocessor.

 Fig. 13.14
 Figure 13.14 shows the block diagram of this D/A converter, which includes
internally a latch and output op amp. It can be operated with + 4.5 V to 16.5 V d.c. power

 401

supply. Two pins CS (chip select) and CE (chip enable) are provided with the chip to

interface with the microprocessor 8080 or 8085. For the interfacing with 8085 CE may

be connected to IOW of the processor and CS may be connected to the A7 bit of the
address line. The other pins of the address lines may be assumed as 0, so that 80 H will

be the port address of this converter. When both the signals CS and CE are at logic 0,
the latch is transparent means the input is transferred to the D/A block of this converter.

When either of CS or CE goes to logic 1, the input is latched in the register and held
until both control signal go to logic 0.
 The programs given in the above examples (solved) can be executed with this
converter by using the proper port address.

13.6 ANALOG TO DIGITAL CONVERTER
 Generally the information to be processed by the digital systems is in the analog
form. So before applying such signals to the digital systems it is necessary to convert the
signal into its equivalent digital form. The method with the help of which the analog
signal is converted to digital form is known as analog to digital (A/D) converter. The A/D
converter is more complex and difficult than the D/A converter. Followings are the
different methods for A/D converter, which will be discussed in the next sections.

(i) Simultaneous A/D converter

(ii) Successive approximation D/A converter

(iii) Counter or Digital Ramp type A/ D converter

(iv) Single slope D/A converter

(v) Dual slope D/A converter

13.7 SIMULTANEOUS A/D CONVERTER
 This is the fastest and simplest method of converting an analog signal to digital
signal. It utilizes the parallel differential comparators; the input analog voltage is
compared by these comparators with known voltages called as reference voltages. The
comparators gives the low output (logic 0) when the input is less than the reference
voltage and gives the high output (logic 1) when the input analog voltage exceeds the
reference voltage. This method of conversion is also called as Flash or parallel type A/D
converter.

Fig. 13.15

 For the conversion of analog voltage ranging between 0 to V volts into two bit
digital output, three comparators (in general 2n – 1 comparators where n in the number of

 402

bits) are required. The input analog voltage is converted to the 4 (in general 2n) equal
regions as shown in figure 13.15. If the analog voltage is lying in the first region, then the
binary bits (b1, b0) are 00, similarly to second, third and forth regions the binary bits are
01, 10 and 11 respectively. The reference voltages to the three comparators C0, C1, C2

should be V/4, V/2, 3V/4 respectively as shown in figure 13.16. The output of the three
comparators should be connected to the logic gates to produce the desired binary output.
The read gates and output registers are used to read the digital output.

Fig. 13.16

 Referring to figures 13.15 and 13.16, if the input analog voltage exceeds the
reference voltage to any comparator, the comparator gives high output (logic 1); if on the
other hand if the input analog voltage is less than the reference voltage of the comparator,
it gives low output (logic 0). In this way if all the comparators give low output, the
analog input voltage must be between 0 and V/4 volts (I region) and digital binary output
should be 00. If the C0 is high and C1 and C2 are low, the input must be between V/4 and
V/2 volts (II region) and digital binary output should be 01. If C0 and C1 are high and C2
is low, the input must be between V/2 and 3V/4 volts (III region) and digital binary
output should be 10. Finally if all the comparators give high outputs, the input must lies
3V/4 and V volts (IV region) and digital binary output should be 11. Table 13.2
summarizes outputs of the comparators.
 Table 13.2

 By drawing the K –maps (figure 13.17), the expressions for b0 and b1 are obtained
as:

 11 Cb = and 010 CCb ⋅=

 403

 (a) (b)

Fig. 13.17
 These expressions may be realized using the gates as shown in figure 13.18. The
output may be reset by applying high signal to the reset line and to read the data a high
signal is applied to the read line.

Fig. 13.18

 For the conversion of analog input voltage (0 to V volts) into three bit binary
output we proceed in the similar method as for the two bits output. For the three bits
outputs the input voltages are divided into 8 (as 23 = 8) equal regions and 7 (as 23-1 = 7)
comparators are to be used. So the logic circuit to be designed should have seven inputs
(output of the seven comparators) and three outputs. The output of comparators and the
corresponding binary output are shown in table 13.3.

Table 13.3

 The expressions of the output bits can easily be obtained by examining the table
13.3.

 404

The bit b2 gives the high output whenever the output of the comparator C3 is high.
So 32 Cb = .

The bit b1 is high whenever the output of comparator C1 is high and output of C3

is low, or whenever the output of comparator C5 is high. So 5311 CCCb +⋅= .

Similarly, the expression for bit b0 can be obtained as:

 65432100 CCCCCCCb +⋅+⋅+⋅=

 Fig. 13.19
 These expressions may be realized using the gates as shown in figure 13.19. The
output may be reset by applying high signal to the reset line and to read the data a high
signal is applied to the read line.

The design of a simultaneous A/D converter is quite straight forward and
relatively easy to understand. However, the design becomes complicated as the number

 405

of bits is increased, since the number of comparators to be used increases drastically. This
method has highest speed of conversion.
13.8 SUCCESSIVE APPROXIMATION A/D CONVERTER
 Simultaneous A/D converter has the very fast conversion time but becomes
unwieldy when the required digital bits are more. The successive approximation method
is most useful and commonly used method. The block diagram four bit successive
approximation A/D converter is shown in figure 13.20. It consists of a D/A converter,
successive approximation register (SAR) and a comparator. The basic principle of this
A/D converter is as follows:

Fig. 13.20

 In this type of converter, the bits of D/A converter are enabled one by one,
starting with the most significant bit (MSB). The analog output of the D/A converter
corresponding to the enabled bit is compared with the input analog voltage. The
comparator gives the output low if the input analog voltage is less than the output of the
D/A converter and it gives the high out if the input analog voltage is more than the output
of the D/A converter. The low output of the comparator resets the corresponding bit of
SAR, on the other hand if the comparator’s output is high then that bit is retained in SAR.
In this way the output of D/A converter are compared with the input voltage for all the
bits starting with the most significant bit.

Thus the successive approximation method is the process of approximating the
analog voltage bit by bit starting with MSB. This process is shown in figure 13.21.

 406

Fig. 13.21
In order to understand the operation of this type of A/D converter, we will take a

specific example of a four-bit conversion. Figure 13.22 (a through d) shows the step –by-
step conversion of a given analog input voltage (say 6 volts). It is further assumed that
D/A converter has the following output characteristics:

Vout = 8 volts for bit 3 (MSB or b3)
 Vout= 4 volts for bit 2 (2nd MSB or b2)
 Vout= 2 volts for bit 1 (3rd MSB or b1)
 Vout=1 volt for bit 0 (LSB or b0)

(a)

 407

 (b)

 (c)

(d)

Fig. 13.22
 It is clear from these figures that after completing the conversion cycle. The
binary code 0110 is retained in SAR, which is binary value of the input voltage (6Volts).
It is finally displayed on the display devices.

13.9 COUNTER OR DIGITAL RAMP TYPE A/D CONVERTER
 Another method of converting the analog signal to digital one is the counter or
digital ramp type A/D converter which utilizes a binary counter to count a continuous
pulse of standard width and height from a clock. The standard clock pulses are passed
through a gate which is open for some time to allow these pulses to go to the input of
counter. Normally the gate is closed and as soon as the start signal is applied a stair case
voltage is initiated. This voltage is increased linearly with the increase of the binary
counts in the counter. The gate remains open for the time the linear stair case voltage

 408

becomes equal to the input analog voltage. The counter records the number of clock
pulses which is proportional to the input analog voltage.

Figure 13.23 shows the schematic diagram of this type of A/D converter. The
analog signal, to be converted to its equivalent digital output, is applied to one input of an
operational amplifier being used as a comparator. When a start of conversion pulse is
applied to the control unit it resets the binary counter and opens the gate. The counter

 Fig. 13.23
starts counting the clock pulses which are of standard width and height. The output of the
counter is fed to a D/A converter which produces an analog output (stair case voltage) in
response to the digital signal (output of the counter) as its input. This analog output
voltage is fed to the reference input of the comparator. So long as the input analog signal
is greater than the stair case voltage the comparator provides the high output to the gate,
the gate remains open and the clock pulses are allowed to reach to the input of the
counter. These pulses are counted by the counter thus continuously increasing the digital
output. The moment the analog output of D/A converter (stair case voltage) exceeds the
input analog voltage, the comparator provides a low output disabling the gate and the
counter stops counting. The binary number stored in the counter represents the digital
output voltage corresponding to the input analog voltage. The digital output is displayed
on the display devices.

 409

Fig. 13.24
 For a steady input the digital output is as shown in figure 13.24. The output is
represented by the number of clock pulses counted by the counter till the stair case
voltage becomes equal to the input voltage. This method of conversion is slow; as for
maximum input, the counter has to count from zero to maximum number of states for the
comparison. For each conversion cycle the counter is to be reset and counting starts from
beginning. The time of conversion is not important in d.c. or slow varying signals as the
output waveform gives a good representation from which the input waveform can be
constructed as shown in figure 13.25. But if the conversion time and the signal transient
time are comparable the reconstructed digital output will not be correct. In this case it is
necessary to reduce the conversion time by using faster D/A converter.

 Fig. 13.25
 A modification to this converter is possible if the resetting of the counter is
avoided each time. For this purpose an up/down counter may be used in place of up

 410

counter. The circuit shown in figure 13.26 illustrates this modification in which an

Fig. 13.26
up/down binary counter is used and the converter proceeds without resetting. The circuit
is almost the same as the counter or digital ramp type A/D converter. The up/Down
counter is operated by up or down signals from the control unit. The digital to analog
converter output controls the output of the comparator. Till the D/A converter output is
less than the analog input voltage, the up signal is enabled and the counter counts in
forward direction. When the analog input falls, the down signal is enabled and the
counter starts reverse counting giving an output corresponding to new analog input as
shown in figure 13.27.

 Fig. 13.27
13.10 SINGLE SLOPE A/D CONVERTER

This type of method is similar to counter or digital ramp type A/D converter. In
this type of A/D converter also, a gate whose period is proportional to the amplitude of
the analog sample is generated. For the generation of gate, the input analog voltage is
compared with the output of an integrator. The output of integrator is a ramp voltage of
constant slope. The standard clock pulses are passed through the gate and are counted by
the counter. The gate remains open for the time proportional to the input analog signal.
The recorded number of pulses is, therefore, the required digital output of the analog
signal.

 411

 The schematic block diagram of such an analog to digital converter is shown in
figure 13.28. Initially a reset pulse is applied which clears the counter and resets the
integrator. The integrator produces a linearly rising ramp voltage, whose slope will
depend on the values of the resistance R and capacitor C. The input analog voltage is
compared by a comparator with the ramp voltage. As long as the integrator output is
smaller than the input analog voltage, the comparator output is high. This high output
enables the AND gate. The standard clock pulses are, therefore, allowed to pass through
the gate which will be counted by the counter. When the ramp voltage becomes greater
than the input analog voltage, the comparator changes the state thereby disabling the
AND gate. The counter stops counting. It can easily be seen that the gate duration is
linearly related to the magnitude of the input analog signal. Hence the count accumulated
in the counter is a digital representation of the input analog voltage.
 It may be mentioned here that the precision in the proportionality between the
gate duration and the magnitude of the input analog signal depends upon the linearity of
the ramp voltage obtained at the output of the operational amplifier. So the overall
accuracy will depend upon the stability of reference source, the off-set of the operational
amplifier, the frequency stability of the clock as well as the values of resistance R and
capacitance C.

 Fig. 13.28

13.11 DUAL SLOPE A/D CONVERTER

 412

 In single slope A/D converter, the accuracy of the converter depends on the
linearity of the ramp voltage generated by the integrator. The linearity of ramp voltage,
however, depends on the accuracy of the values of Resistance R and capacitance C of the
integrator, whose values may vary with time and temperature. The dual slope analog to
digital converter utilizes two different ramps, one for fixed time and other for fixed slope.
It is very popular and widely used D/A converter because it has the slowest conversion
time and relatively low cost. This method offers good accuracy, good linearity, and very
good noise rejection characteristics.

 Fig. 13.29

 The logic diagram of the dual slope A/D converter is given in figure 13.29. This
converter is similar to that of the single slope A/D converter. In this converter, the
integrator forms two different ramps, one for fixed time and other for fixed slope. The
capacitor of the integrator is first charged with constant current obtained from input
analog voltage for fixed time then the capacitor is discharged for fixed slope through
other constant current obtained from a reference voltage source. The basic operation of
this converter can be understood as follows:
 This converter consists of standard clock pulses applied to the gate. The gate
allows the pulses to the input of the counter which counts these pulses. Initially all the
counters are reset to 0’s and ramp too is reset to zero. Now the control logic allows
switch S to connect the input analog voltage Vin to the integrator circuit. A constant

current equal to
R

Vin flows through the capacitor C as the inverting input of the

operational amplifier of the integrator is at virtual ground. The capacitor C will charge
linearly with this constant current. This results a negative going ramp at the output of the
integrator. The comparator’s output will be positive which allows the clock pulse to pass
through the AND gate to the input of the counter. This ramp is allowed for fixed time say
t1. The actual time t1 is determined by the count detector. The voltage VC at the output of
the integrator is given by:

 413

 ∫−=
1

0

.
.

1
t

inC dtV
CR

V

 1..
.

1
tV

CR in−= … (13.6)

 The counter when reaches the fixed count at t1, the control logic generate a pulse
to clear the counter to zero and the switch S connects the integrator input to a negative
reference voltage (– VREF). The capacitor C of the integrator starts discharging linearly
due to the constant current from – VREF. The integrator thus produces a positive going
ramp beginning at -VC and increases steadily till it reaches to 0 volt as shown in figure
11.29. At this time the counter is counting. The conversion cycle ends when VC = 0 volt;
the comparator produces the low state, which disables the gate and counter stops
counting.

Fig. 13.30

Let t2 is the time when the output of integrator becomes zero, so the output of the

integrator is given by:

 2.
.

t
CR

V
V REF

C = … (13.7)

 Since the integrator’s output beginning at 0 volt and integrates down to –VC and
then integrate back to 0 volt, so the equations (13.6) and (13.7) may be equated as:

 21 .
.

.
.

t
CR

V
t

CR

V REFin =

 or
1

2.
t

t
VV REFin = … (13.8)

 In this equation VREF and time t1 are constants, so
 2tVin ∝ … (11.9)

 This equation is independent of the values of resistance R and capacitance C.
Further at the end of conversion cycle, the counts measured by the counter are
proportional to the input analog signal are latched to display on the display devices.

13.12 ADC 0808/0809
 The ADC 0808/0809 is an 8-bit A/D converter with 8-channel multiplexer which
can be interfaced with the microprocessor. It is the most popular, inexpensive and widely

 414

used A/D converter. It is a monolithic CMOS device which uses the method of
successive approximation A/D converter. It does not require external zero and full scale
adjustment. The device operates with + 5 V d.c. supply. The conversion time is 100 µsec
at clock frequency of 640 KHz. The 8-channel multiplexer can directly access any of the
8 single ended analog signals.

 The ADC 0808 / 0809 offers following features:

• High speed

• High accuracy

• Minimal temperature dependence

• Excellent long term accuracy and repeatability

• Consume minimal power

Fig. 13.31

 The pin diagram and schematic block diagrams of this IC ADC 0808 / 0809 are
shown in figures 13.31 and 13.32 respectively. The pin description of this IC is given as:

Pins 26-28 and 1-5 – are 8 input channels IN0 – IN7 (multiplexed), which are
selected by the three (address) lines ADD A, ADD B and
ADD C.

Pin 6 SOC – Start of conversion pin. A high to this pin starts the
conversion.

Pin 7 EOC – End of conversion. This an output terminal and gives high
signal when the conversion ends.

Pins 21-18, 8, 15-14 & 17 8-bit output (latch) pins to be connected to the port of 8255.

 415

Pin 9 OE – Output enable pin which is connected to the positive
supply.

Pin 10 CLK – Clock terminal. It is to be connected either to the external
clock of frequency between 10 to 1280 KHz or the clock
out frequency of the 8085A after dividing it by a factor of
four may be connected to this pin.

Pin 11 VCC – Supply pin (+5 V).
Pin 12 Ref (+) – Reference pin which is to be connected to the + supply.

 Fig. 13.32
Pin 13 GND – Ground terminal.
Pin 16 Ref (-) – Reference pin to be connected to the ground.
Pins 25-23 – Address pins (ADD A, ADD B and ADD C). These pins

are used to select the channels as given below (Table 13.4):
 Table 13.4

Channels
Selected

Address lines

C B A

IN0 0 0 0

 416

 The timing diagram of this IC is shown in figure 13.33.

Fig. 13.33

 The interfacing connection of ADC 0808 / 0809 with the microprocessor 8085A
is shown in figure 13.34. In this circuit an analog voltage, whose equivalent digital value

IN1

IN2

IN3

IN4

IN5

IN6

IN7

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

 417

is to be obtained, is applied to IN0. The output terminals of the ADC are connected to

 Fig. 13.34
Port A of 8255 PPI. This port is to be used as the input port. The PC7 terminal of the Port
CUpper is connected to the End of Conversion terminal of the ADC. This port is also used
as the input port. The port CLower is used as the output port. The three terminals PC0 to
PC2 are connected to the three address pins of the ADC 0808 / 0809 for the selection of
input channel. The PC3 terminal is connected to the SOC (Start of Conversion) and the
ALE terminals of the converter. The OE and REF (+) terminals are connected to the + 5V
supply. The assembly language program is given below:

 In the above circuit diagram, the channel used is IN0, so for its selection we have:

 C B A

 PC2 PC1 PC0

 0 0 0 = 00 H

 To enable the start of conversion first PC3 is made high and then low without
changing the selection of channel, we proceed as follows:

 PC3 PC2 PC1 PC0

 1 0 0 0 =08 H

 PC3 PC2 PC1 PC0

 0 0 0 0 =00 H

PROGRAM
Label Mnemonics Operand Comments

MVI A, 98 H ; Initialize 8255-I to work Port A
and Port CUpper as input ports, and
port CLower as output port.

 418

 OUT 03 H ; Write the control word in the
control word register of 8255-I.

 MVI A, 00 H ; Load accumulator with 00H.
 OUT 02 H ; 00H is sent to Port CLower to select

IN0 channel.
 MVI A, 08 H ; Load 08 H to accumulator.
 OUT 02 H ; ALE and SOC are enabled (high).
 MVI A, 00 H ; Load 00 H to accumulator.
 OUT 02 H ; ALE and SOC will be low. A

pulse is applied from high to low
for the conversion through PC3
without affecting the channel
selected.

READ IN 02 H ; Read End of conversion (PC7).
 RAL ; Rotate left to check if PC7 is one.
 JNC READ ; If not 1 READ again.
 IN 00 H ; Read digital output of the A/D

converter.
 STA 2100 H ; Store the result in 2100 H memory

location.
 HLT ; Stop processing.
 After the execution of this program, the values stored in the memory location 2100
may be checked.

 Analog Voltage Digital output
 0 V 00 H
 1 V 34 H
 1.4 V 47 H
 2 V 6D H
 2.8 H 90 H
 3 V 94 H
 4 V CE H
 5 V FF H

13.13 A/D CONVERTER USING D/A CONVERTER AND SOFTWARE
 The A/D converter can also be realized using the D/A converter and the software.
For this purpose the software is used to implement successive approximation A/D
converter. Figure 13.35 shows the interfacing connection for this. The input analog
voltage is applied to a comparator. This voltage is compared by the output of the D/A
converter. The output of the comparator is sensed by the microprocessor through the PC7

of the 8255. A digital input is applied to the D/A converter, through port A of 8255.

 419

Fig. 13.35

 The microprocessor first applies 00 H as the digital input to the DAC 0808 and
checks through PC7 for high signal. If a high pulse does not appear at the output terminal
of the comparator, the microprocessor increments the digital input by 1 and the process is
repeated till a high signal appears at the output of the comparator. As a high signal
appears the microprocessor stops successive approximation and the corresponding digital
input value is stored in the memory location. This digital value is equivalent to the analog
signal applied at VIN terminal of the comparator. The software for the same is given as:
PROGRAM
Label Mnemonics operand Comments

LXI SP, XXXX H ; Initialize stack pointer.
MVI A, 88 H ; Initialize 8255-I to work Port A,

Port B and port CLower as output
ports, and Port CUpper as input
ports.

 OUT 03 H ; Write the control word in the
control word register of 8255-I.

 MVI A, 00 H ; Load accumulator with digital
input to send it to D/A converter.

LOOP OUT 00 H ; The digital input is sent to D/A
converter through Port A.

 PUSH PSW ; Save PSW

 420

 CALL DELAY ; Call delay subroutine program.
 IN 02 H ; Check the output of the

comparator through PC7, Read PC7
bit.

 RAL ; Rotate left to check PC7, if it is
high.

 JC NXT ; If is high go to NXT.
 POP PSW ; Else get the digital value from the

stack.
 INR A ; Increment digital value.
 JMP LOOP ; Jump to LOOP.
NXT POP PSW ; Get the digital value from the

stack.
 STA 2100 H ; Store the result in 2100 H memory

location.
 HLT ; Stop processing.
SUBROUTINE PROGRAM:
Label Mnemonics Operand Comments
DELAY LXI D, 0002 H ; Loads DE register pair with a 16-

bit number.
LOOP1 DCX D ; Decrements DE register pair by

one.
 MOV A, E ; Moves the contents of E register to

accumulator.
 ORA D ; ORing of the contents of D and E

registers are performed to set the
zero flag.

 JNZ LOOP1 ; If result 0≠ jump to loop1
 RET ; Go back to main program.
 After the execution of this program, the values stored in the memory location may
be checked for the input applied voltage.
 Analog Input Digital output
 0 V 00 H
 2.5 V 40 H
 5 V 80 H
 10 V FF H

PROBLEMS
1. Discuss the resistive divider D/A converter. Find the general expression for the

output voltage of a resistive divider network.
2. Using the resistive divider network draw the circuit of a 6 bit D/A converter and

explain its operation. What are the drawbacks of this D/A converter?
3. Show that the outputs of a binary weighted resistor network are directly

proportional to the binary inputs.
4. Draw the schematic diagram of a resistive divider D/A converter. Explain its

operation. Mention the drawbacks of this converter.

 421

5. A 5 bit resistive divider network has 0 volts full scale output, find the output
voltage for a binary input 10101. (Ans. 6.774 V)

6. A 6 bit resistive divider D/A converter has resistance of 100 KΩ in MSB branch.
The reference voltage is 15 V. The resistance in the feed back path of the
operational amplifier is 39 KΩ. What is the output voltage for the binary input
101101? (Ans. – 8.22V)

7. For a 6 bit resistive divider network, the reference voltage is 10 V, find the
following:

 (i) Full Scale output voltage.
 (ii) The analog output voltage for a digital input of 010011.
 (iii) The output voltage change due to least significant bit.
 (Ans.:10V, 3.02 V, 0.16 V)
8. Draw the schematic diagram of a binary ladder D/A converter. Explain its

operation. Mention its merits and demerits.
9. Find the expressions for the output due to MSB and second MSB of a 4-bit binary

ladder network.
10. Discuss the binary ladder D/A converter. Find the general expression for the

output voltage of a binary ladder network.
11. What are the performance criteria for the D/A converter? Discuss their

importance while selecting a D/A converter.
12. For a 6-bit binary ladder D/A converter the input levels are 0 = 0 V and 1 = 10 V,

find
(i) The output voltages caused by each bit.
(ii) The output voltage corresponding to an input of 101101.
(iii) The full scale output voltage of the ladder.

(Ans. (i) -5V, -2.5 V, -1.25 V, -0.625 V, -0.3125 V, -0.15625 V
 (ii) – 7.03125 V (iii) – 9.84 V)

13. For a 5-bit binary ladder D/A converter the input levels are 0 = 0 V and 1 = 10 V,
find the output voltage corresponding to binary input of (i) 10111 (ii) 01101.

 (Ans. – 7.1875 V, – 4.0625 V)
14. What is the step size (or resolution in volts) of a 10 bit D/A converter, if the full

scale output is +10 volts? Find the percentage resolution also.
 (Ans. 9.78 mV, 0.0978%)

15. How many bits are required at the input of a D/A converter to achieve a resolution
of 15mV, if the full scale output is 15 volts?

 (Ans. 10 bits)
16. Give the details of D/A converter IC 0808. Using this IC draw a circuit diagram to

get the analog output voltage corresponding to 8 bit digital input.
17. Describe how the interfacing of the D/A converter is done with the

microprocessor 8085A. Give its circuit diagram.
18. Discuss the simultaneous A/D converter to convert 0 to V volts analog voltage to

3 bit digital output. Draw the logic diagram also. What are the disadvantages of
this type of A/D converter?

19. Give the details of the microprocessor compatible D/A converter IC AD558.
20. Draw a logic diagram to convert 0 to V volt analog voltage to its equivalent 2 bit

digital output using simultaneous A/D converter.

 422

21. Describe the successive approximation method for A/D conversion.
22. Draw a schematic diagram of counter or digital ramp type A/D converter. Explain

its operation.
23. Describe the modified counter or digital ramp type A/D converter with neat

diagram.
24. Draw a schematic diagram of a D/A converter. Explain its operation.
25. Describe single slope A/D converter with it logic diagram. Mention its merits and

demerits.
26. Describe Dual slope A/D converter with it logic diagram.
27. Give the details of A/D converter IC 0801.
28. The input bits of the D/A converter is connected to the output pins of Port A of

8255, which is already connected with the microprocessor (ref. fig.13.13). Write a
program to generate stair case voltage with ten steps. It should have the constant
pulse duration.

29. Write a program to generate square wave of 2 KHz frequency with a peak voltage
of 2.5 volts. Use D/A converter (ref. fig. 13.13) for this purpose. The square wave
should be available at the output of the converter.

30. Give the details of A/D converter IC ADC0808/0809. Using this IC draw a circuit
diagram to get the digital value of the input analog voltage.

31. Describe how the interfacing of the A/D converter is done with the
microprocessor 8085A. Give its circuit diagram.

32. Write a program to get the digital output of an analog signal applied to ADC
0808/0809 interfaced with the 8085A. The input analog signal is applied to the
channel 3 of this IC.

33. Explain how the A/D converter can be designed using D/A converter and the
software. For this purpose the software is used to implement successive
approximation A/D converter.

14
Serial Communication and

Programmable
Communication Interface

 In continuation to the series of interfacing devices, the discussion will now be
made on serial data communication and programmable communication interface, since
the serial data transmission is always preferred for long distance transmission. Though
the serial data transmission can be made through the SID (serial input data) and SOD
(serial out data) lines of 8085A microprocessor, but it requires suitable software for the
data transfer. Moreover, most of the microprocessors do not have the provision of SID
and SOD lines. Apart from this, it can not offer high baud rate. Hence this chapter will
deal the detailed discussion on serial communication and most powerful programmable
communication interface IC 8251.

14.1 SERIAL DATA COMMUNICATION
 There are two types of data communication, Parallel and Serial data
communications. In parallel data communication each bit of a word is to be transmitted
on a separate line along with a common ground line. In the 8085A microprocessor the
data to be transmitted is of 8 bits. This parallel data transmission is not recommended for
long distance communication as large number of data lines is needed. In serial data
transmission, data is transmitted bit by bit either from the microprocessor to I/O devices
or vice-versa. There are certain input/output devices in the microprocessor based systems,
which only accept the serial data. The common I/O devices for such a data
communication are CRT terminals, printers, cassette recorders etc. The microprocessors
thus have the provision for transferring the data in the serial fashion. In such I/O devices,
a parallel to serial conversion is required for the data transfer from the microprocessor to
the peripheral device (figure 14.1a). Similarly, a serial to parallel conversion is required
in transmitting the data from the peripheral device to the microprocessor (figure 14.1b).

 As already discussed, the 8085A microprocessor has the provision of SID and
SOD lines for the serial data transfer between the microprocessor and I/O devices. But it
requires the software. Moreover, most of the microprocessors do not have the provision
of these SID and SOD lines. Apart from this, it can not offer high baud rate. So, serial
data communication is generally used for the long distance communication with high
baud rate. Further, it requires less number of lines for the data transmission.

 424

(a)

(b)

Fig. 14.1

 The serial communication occurs either in the following two formats:

• Synchronous

• Asynchronous
 In synchronous format, a receiver and a transmitter are synchronized. In this
format the data is divided into fairly large blocks, typically 1000s of bytes. A block of
characters is transmitted along with the synchronization information. The synchronizing
signals are added once before each block. The synchronization characters mark the
beginning of the transmission. This format is generally used for high baud rate (more
than 20 K bits/second). The baud rate is defined as the number of bits transmitted or
received per second. Figure 14.2 illustrates this format.

Fig. 14.2
 In asynchronous format, timing signals are added to each character of data. A
START bit is added at the beginning of each character. A STOP bit is added at the end of
the character data. A low signal is used for the START bit and a high signal is used for
STOP bit. When no data is being transmitted, a receiver stays high, called MARK . The
process of adding start and stop bits to a character is known as FRAMING . The
asynchronous format is generally used for low speed transmission. This format is
illustrated in figure 14.3.

 425

 Fig. 14.3
 The serial mode of data transfer can be divided into three groups namely:

 Simplex Method

 Duplex Method

 Half Duplex Method

 In simplex method data transfer takes place in unidirectional i.e. either from the
system to the I/O devices or from I/O devices to the system, of course through the serial
link. A typical example is the transmission from a system to a printer.
 In the duplex method data transfer takes place in both the directions. However, if
the transmission goes one way at a time, it is called half duplex; if it goes both ways
simultaneously, it is called full duplex. The walkie talkie is an example of half duplex
and the communication between the computers is an example of full duplex.
14.2 MODEM

One of the most common applications of the serial transmission would be data
transmission between large computers. For such serial digital transmission the existing
telephone lines are used. The telephone lines are designed to carry analog signals in the
range of 40 Hz to 4 KHz. These lines will not readily support digital signals. Therefore,
the digital data is to be converted into audio frequency format. A device that can convert
the digital value in the form of the audio signal has to be used because the basic binary
bits can not be placed directly on these lines. Such a device is known as MODEM
(MODULATOR- DEMODULATOR). The modem is be used at both the ends; at the

 Fig. 14.4

 426

receiving end as well as at the transmitting end. The modem at the transmitting end
converts digital signal into analog signal format (audio frequency range) and at the
receiving end the modem converts audio signal back to the digital data.

 Fig. 14.5
Modems often use frequency shift keying technique for the conversion. It converts a

1 level signal into an audio signal of 1200 HZ and 0 level into audio signal of 2200 Hz.
These converted audio signals are modulated on the carrier and then transmitted to the
telephone lines. However at the receiving end another modem is used to convert the
audio signal back to digital form. Figure 14.4 shows the block diagram of such
transmission system. The originators and receptors of the digital data are called Data
Terminal Equipments (DTE) and the modem units are called Data Communication
Equipments (DCE). Figure 14.5 shows the modem connections using telephone lines.

14.3 SERIAL COMMUNICATION STANDARD
There are primarily two standards for transmitting the information in serial form.

All the serial I/O devices work on either of these standards.
• Current Loop
• Voltage standard

In a current loop method, the current flows through the lines for the logic 1 and no
current flow for the logic 0.
 The two standards for the current loop are:

 20 milliampere loop
 60 milliampere loop.

 A current loop reduces noise pickup and is suitable for long distance transmission.
 The other standard is the voltage signal. When the data is transmitted as voltage,
the commonly used standard is known as RS 232C. It is defined in reference to DTE
(Data Terminal Equipment) and DCE (Data Communication Equipment) – terminal and
Modem as shown in figure 14.6, which illustrates the connections of DTE to DCE. This
standard was developed before the existence of TTL logics; its voltage levels are not
compatible with TTL logic levels.

 427

Fig. 14.6

RS 232C
 Figure 14.7 shows the RS 232C 25-pin connector. The signals are divided into
four groups namely:

• Data Signals
• Control Signals
• Timing Signals
• Ground

Fig. 14.7
The pin assignments are given below:

Pin 1: Protective Ground

Pin 2: Transmitted Data (T x D) DCE

Pin 3: Received Data (R x D) DTE

Pin 4: Request to Send (RTS) DCE

Pin 5: Clear to Send (CTS) DTE

Pin 6: Data Set Ready DTE

Pin 7: Signal Ground

Pin 8: Received Line Signal Detector

Pin 9: Reserved for Data Set Testing
Pin 10: Reserved for Data Set Testing

Pin 11: Unused

Pin 12: Secondary Received Line Signal Detector

Pin 13: Secondary Clear to send

Pin 14: Secondary Transmitted Data

Pin15: Transmission Signal Element Timing (DCE Source)

 428

Pin 16: Secondary Received Data

Pin 17: Receiver Signal Element Timing (DCE Source)

Pin 18: Unused

Pin 19: Secondary Request to Send

Pin 20: DCE Data Terminal Ready (DTR)

Pin 21: Signal Quality Detector

Pin 22: Ring Indicator

Pin 23: Data Signal Rate Selector (DTE/DCE Source)

Pin 24: Transmit Signal Element Timing (DTE Source)

Pin 25: Unused

 Technically the RS232C has -3V to -12V for logic '1' and +3V to +12V for logic
'0'. This is negative logic. Because of incompatibility with TTL logic, voltage translator
called line drivers and line receivers are required to interface TTL logic with RS232
signals. As shown in figure 14.6, the minimum interface requires three lines: pins 2, 3
and 7. These lines are defined in relation to the DTE; the terminal transmits on pin 2 and
receives on pin 3. On the other hand, the DCE transmits on pin 3 and receives on pin 2.

 The comparative study of synchronous and Asynchronous modes of data transfer
to and from the serial I/O devices is given in table 14.1.

Table 14.1

Sr.
No.

Format

Serial Transmission

Synchronous Asynchronous

1.

2.

3.

4.

5.

6.

Data format

Framing

Speed

Distance for
communication.

Implementation

Data direction

Groups of characters

Synchronous characters are
sent with each group.

High speed, 20 K bits/sec
or more.

Recommended for long
distance communication.

Hardware.

Simplex, half and full
duplex.

One character at a time.

START and STOP bit/bits
are sent with each character.

Low, Less than 20 K bits/sec.

Recommended for small
distance communication.

Hardware or Software.

Simplex, half and full
duplex.

 429

 The computer communicates with the serial I/O devices either in Asynchronous
or Synchronous modes. Here the discussion will be made on the Asynchronous mode of
serial data transfer, as it is both hardware and software implemented.

14.4 ASYNCHRONOUS SOFTWARE APPROACH
 In this case, the framing of each character is done by introducing START and
STOP bits using the software. The data in parallel form is available with the
microprocessor to be transmitted to serial I/O devices. The data is then converted to serial
form using the software and sent to the serial I/O devices through an interfacing circuit.
The interfacing circuit is to be designed for the microprocessor 8085A microprocessor is
shown in figure 14.8. This circuit consists of D-type flip-flop (IC 7475) whose device
address is chosen to be FF H. The address bus is decoded using an 8-inpout NAND gate

(IC 7430), and combined with the control signal IOW to clock the latch. When the
instruction OUT FF H is executed, the clock goes high and bit at the DIN terminal is
transferred to output Q of the flip-flop. The bit is latched as the clock goes low. If the Q
is high 20 mA current flows through the TTY (Tele Type) circuit.

Fig. 14.8

 Let us consider, a message is to be transmitted to teletype (TTY) using the 8085A
microprocessor. The interfacing circuit, shown in figure 14.8, is used for this
transmission. The characters of the message are stored in the memory locations starting at
2101 H. Each character includes framing information (START and STOP bits). Each
character has 11 bits for the transmission; 8 bits for ASCII character, one START bit and
two STOP bits. .Let the first character of the message is W (ASCII code for W is 57 H).
Figure 14.9 shows a stream of eleven bits for this first ASCII character of the message.
The character bits are transmitted beginning with the least significant bit (LSB) D0. The

 430

bit time, the delay between two successive bits, is determined by the transmission rate
(baud rate).

Fig. 14.9

 A typical (TTY) sends (or receives) 10 ASCII characters per second. If each
character has 11 bits, then TTY transmits 110 bits/second.

 TTY transmission rate = 110 bits/second

 Time for each bit =
110

sec1

 = 9.1 msec.

 Therefore, microprocessor should send bit by bit information (including framing
bits) to TTY to transmit the bit a time interval of 9.1 msec.

 For the transmission the necessary software for 8085A is given as:

PROGRAM
Label Mnemonics Operand Comments

LXI SP, XXXX H ; Initialize Stack pointer.
 LXI H, 2101 H ; Initialize H-L register pair for

index pointer.
 MVI A, 01 H ; Set up MARK bit as 1.
 OUT FF H ; Goes to the output of Flip-flop,

whose address is FF H.
NXT MOV A, M ; Accumulator is loaded with the

character of the message.
 CPI 0D H ; Compare if the character is

Carriage return (0D H is the ASCII
Code of carriage return).

 MOV B, A ; Save the character in register B.
 JZ END ; If the character is Carriage return,

jump to END.

 431

 CALL SERIAL ; Else Call subroutine for converting
into the serial form of the
character.

 INX H ; Point to next character of the
message.

 JMP NXT ; Jump for next character.
END CALL SERIAL ; Call subroutine for converting into

the serial form of the character
‘Carriage return’.

 MVI B, 0A H ; Load the character of Line feed
(0A H is the ASCII code for line
feed).

 CALL SERIAL ; Transmit line feed serially.
 HLT ; Stop Processing.

SUBROUTINE PROGRAM:
 This is the subroutine for the conversion of bit of a character into serial form and
then transmits to a TTY with a baud rate of 110.

Label Mnemonics Operand Comments
SERIAL MVI C, 08 H ; Load register C with 08 H, which

is used as counter.
 MVI A, 00 H ; Load START bit.
 OUT FF H ; Send the start bit at the output of

the flip-flop.
 CALL DELAY ; Call delay subroutine which

introduces a time delay of 9.1 msec
after START bit.

 MOV A, B ; Load the character into the
accumulator from register B.

NXT1 OUT FF H ; Send the bit.
 CALL DELAY ; Call delay subroutine which

introduces a time delay of 9.1 msec
between each bit.

 RRC ; Rotate right for the serial
conversion.

 DCR C ; Decrement C.
 JNZ NXT1 ; If rotated 8 times then jump to

NXT1.
 MVI A, 01 H ; Introduce STOP bit.
 OUT FF H ; STOP is sent to the output of the

flip-flop.
 CALL DELAY ; Call delay subroutine which

introduces a time delay of 9.1
msec.

 432

 CALL DELAY ; Call delay subroutine which
introduces a time delay of 9.1
msec.

 RET ; Go back to main program.
Delay Program may be written for the time delay of 9.1 msec.

 Similar, circuit and software may be used for the reception of the messages in the
serial fashion.
 The RIM and SIM instructions can also be used for the transmission and reception
of data in serial fashion.

14.5 PROGRAMMABLE COMMUNICATION INTERFACE
 Many types of UART (Universal Asynchronous Receiver Transmitter) and
USART (Universal Synchronous/Asynchronous Receiver Transmitter) have been
developed for data transfer between serial I/O device and the microcomputer in the form
of the chips. The USART is most powerful and commonly used LSI chip. It provides a
programmable serial communication interface between the microprocessor and serial I/O
devices. The data transfer between the microprocessor and USART takes place in the
parallel form. On the other hand the data transfer between the I/O devices and the
USART is in the serial form. The USART has to be initialized before the data transfer
takes place. The desired data format and synchronization method for the data transfer are
specified during initialization by command byte written by the microprocessor for the
USART. Thus an USART works as parallel to serial converter from microprocessor to
I/O devices and vice-versa. Here we shall discuss the details of the popular USART chip
8251.
14.6 BLOCK DIAGRAM OF 8251A
 The 8251A is a programmable communication interface available in the form of
IC dual in line package. It consists of 28 pins and requires + 5 V d.c. supply for its
operation. Figure 14.10 shows the pin diagram of 8251A. The pin details are as given
below:

D0-D7 Data bus (8 bits) RxC Receiver Clock

DC/ Control or data to RxD Receiver Data
 be written or read RxRDY Receiver Ready

RD Read Data TxRDY Transmitter Ready

 Command DSR Data Set Ready

WR Write Data or DTR Data Terminal Ready
 Control Command SYNDET/BD Sync/Break Detect

CLK Clock Pulse (TTL) RTS Request to Send Data

CS Chip Enable CTS Clear to Send Data
RESET RESET Input TxE Transmitter Empty

TxC Transmitter Clock VCC + 5 V
TxD Transmitter Data GND Ground

 433

Fig. 14.10

 The functional block diagram of 8251A is shown in figure 14.11. It includes the
following four sections:

• Read/Write Control Logic

• Transmitter Section

• Receiver Section

• Modem Control
14.6.1 Read/Write Control Logic

 This section includes 6-input signals: CS, DC / , WR, RESET and CLK; and
three buffer registers:

• Control Register

• Status Register

• Data Bus Buffer Register

CS : It is a Chip Select terminal. A low to this terminal selects the 8251A for
communication with the microprocessor. This is connected to a decoded
address bus.

DC / : It is a Control/Data pin. A high on this terminal addresses the control
register or status register; whereas a low addresses the data bus buffer.

WR : It is an active low Write signal. When a low signal is applied to this
terminal, the microprocessor either writes in the control word register or

 434

sends output to the data buffer. This pin is connected to either IOW or

MRMW.

Fig. 14.11

RD : It is an active low Read signal. When this terminal is low, the
microprocessor either reads the status from the status register or accepts

data from the data buffer. This is connected to either IOR or MEMR.

RESET : It is a Reset input pin. When this terminal is high, it resets the 8251 and
forces it in the idle mode.

CLK : This is the Clock input, usually connected with the system clock.

 The details of the three registers are as:

Control Register:
 This is a 16-bit register and contains the control word with two independent bytes.

 The first byte is called the Mode Instruction Word, and

 the second byte is called the Command Instruction Word.

 This register can be accessed as an output port when DC / pin is high.

Status Register:

 435

 This input register checks the Ready status of a peripheral. This register is

addressed as an input port when DC / terminal is high. It has the same port address as
the control register.

Data Bus Buffer Register
 This is a bidirectional register and can be addressed as an input port and an output

port when DC / pin is low. Table 14.2 gives the summary of interfacing and control
signals.

 Table 14.2

CS DC / RD WR Functions

0

0

0

0

1

1

1

0
0
X

1

0
0
0
X

0

1
1
1
X

Microprocessor writes instruction in USART control register.

Microprocessor reads from USART status register.

Microprocessor outputs data to USART data buffer.

Microprocessor accepts data from USART data buffer.

USART not selected.

 Figure 14.12 shows the expanded version of this section.

Fig. 14.12

 436

14.6.2 Transmitter Section
 The expanded block diagram of the transmitter section is shown in figure 14.13. It
consists of the following registers:

• Transmitter Buffer Register – It holds 8-bit data.

• Serial Output Register – Converts 8-bits into a stream of serial bits.

• Transmitter Control Logic – It directs the output register to send the serial data at
the output register through TxD terminal.

Three output signals and one input signal are also associated with the transmitter
section. These signals are describes as:

TxD : It is Transmit Data terminal. The serial bits are transmitted on this
line.

TxC : This pin is Transmitter Clock . This controls the rate at which bits
are to be transmitted by the 8251A. The clock frequency can be 1,
16 or 64 times of the baud.

TxRDY : This is Transmitter Ready pin. When this output terminal is high,
it indicates that the buffer is empty and the 8251 is ready to accept
a byte. It can be used either to interrupt the microprocessor or to
indicate the status. This signal becomes reset when the data byte is
loaded into the transmitter buffer register.

TxE : This is Transmitter Empty signal used as output terminal. A high
on this terminal indicates that the output register is empty and
becomes reset when a byte is transferred from the buffer register to
the output register.

Fig. 14.13

 437

14.6.3 Receiver Section
 The expanded block diagram of the receiver section is shown in figure 14.14. It
consists of the following registers:

• Receiver Buffer Register

• Serial Input Register

• Receiver Control Logic
The receiver section accepts serial data on the RxD terminal and converts it to parallel

data. When the RxD line goes low, the control logic assumes that it is a START bit and
waits for half a bit time, and samples the line again. It the line is still low, the input
register accepts the next coming bits and forms a character. The character is then loaded
to the buffer register. Subsequently, the parallel byte is transferred to the microprocessor
when a request is made. Following signals are associated with the receiver section which
are described below:

RxD : It is Receive Data terminal. The serial bits are received on this line
and converted to a parallel byte in the receiver input register.

RxC : This pin is Receiver Clock. This controls the rate at which bits are
received by the 8251A. In the asynchronous mode, the clock can
be set to 1, 16 or 64 times of the baud.

RxRDY : This is Receiver Ready pin. When this output terminal is high, the
8251A has a character in the buffer register and is ready to transfer
it to the microprocessor. It can be used either to indicate the status
or to interrupt the microprocessor.

Fig. 14.14

14.6.4 Modem Control

 438

 The modem control section of the 8251A provides two input signals DSR (Data

Set Ready) and CTS (Clear to Send); and two output control signals DTR (Data
Terminal Ready) and RTS (Request to Send) to handle DTE and DCE. These signals are
described as:

DSR (Data Set Ready): This is an active low input terminal used by the modem
to indicate that it is ready for communication.

CTS (Clear to Send): This active low input terminal is used by the modem to
signal the DTE that the communication channel is clear
and it can send out the serial data.

DTR (Data Terminal Ready): This output signal is used by the 8251 to signal the
modem to indicate that the terminal is ready to
communicate.

RTS (Request to Send): This output signal is used by the 8251A to signal to
modem that it has data to be transmitted.

14.7 INTERFACING OF 8251A
Figure 14.15 shows the interfacing connection of 8251A with the microprocessor. The
eight data lines of 8251A are to be connected to the data bus of the microprocessor.

 Fig. 14.15

 439

The RD and WR lines of 8251A are to be connected to the RD and WR of the control
lines of 8085A microprocessor respectively. The CLK pin of the 8251A is be connected
to the CLK out terminal of the microprocessor. The RESET pin is connected to the

RESETOUT of the microprocessor. The terminal DC / is used to select the internal
registers either control register or data register. So it is connected to the A0 address line of

the microprocessor. The chip select terminal CS of the PCI 8251A is to be connected to
the output of an address decoder circuit. The address decoder circuit uses the address
lines A1 to A7 of the microprocessor. From the decoder circuit used in this figure, the chip
select terminal of 8251A will be enabled when A7 and A4 are high and all other inputs are
low. The port addresses for reading the data word, writing the data word, reading the
status word and writing the control word will be as shown in table 14.3.

Table 14.3

A0 RD WR Function Port Address

0

0

1

1

0

1

0

1

1

0

1

0

Read Data Word

Write Data Word

Read Status Word

Write Control Word

90 H

90 H

91 H

91 H

14.8 PROGRAMMING OF 8251A
 It has already been discussed that there is a 16 bit control register in a 8251A
which contains two independent bytes (words). The first byte (word) is known as mode
word which tells about the initialization parameters like mode (Asynchronous or
Synchronous), baud, stop bits and parity bits etc. The second byte (word) is known as
command word which tells about enabling the transmitter and receiver sections. The
readiness of the peripherals can also be checked by reading the status word.

14.8.1 Initialization of 8251A in Asynchronous Mode
 To initialize 8251A in asynchronous mode, a certain sequence of control words
must be followed. After a reset operation (through system RESET or through instruction)
a mode word must be written into the control register followed by a command word. Any
control word written into the control register immediately after the mode word will be
interpreted as a command word that means a command word can be changed anytime
during the operation. However, the 8251A should be reset prior to writing a new mode
word, and it can be reset using internal reset bit (D6) in the command word.

 Figure 14.16 shows the format of the mode word. The bits of this mode word are
described below:

Bits D1-D0: These bits program the baud rate factor. These bits are set
to 00 for synchronous operation. However, for
asynchronous operation these bits specify the factor by

which the transmit/receive clocks TxC and RxC, exceeds
the baud rate. The other clock inputs CLK to the 8251A is
used to generate the internal device timing and must simply
be greater than 30 times the transmitter/receiver baud rate.

 440

 Fig. 14.16
Bits D3-D2: These bits specify the number of data bits in the character

is to be sent or received.

Bit D4: This bit enables the parity. If this bit is 0, the parity is
disabled.

Bit D5: This bit selects the even or odd parity. If this bit is 0, odd
parity is selected. The even parity is selected if this bit is 1.

Bit D6-D7: These bits specify the number of stop bits.

Command Word
 Once the function definition of the 8251A has been programmed by the mode
word instruction, the device is ready for data communication. The command word

 441

instruction controls the actual operation of the selected format. Functions such as Enable
Transmit/ Receive, Error Reset and modem control are provided by the command word
instruction. The format of the command word is shown in figure 14.17.

 Fig. 14.17
The bits of the command word are described below:

Bit D0: This bit enables the Transmitter.

Bit D1: This bit controls the Data Terminal Ready.

Bit D2: This bit enables the Receiver.

Bit D3: This bit makes the transmitter to send continuous break
characters.

 442

Bit D4: This resets the error flags. It resets Parity Error flag (PE),
Over Run Error flag (OE) and Framing Error flag (FE).

Bit D5: This bit controls the request to send to RTS pin of the
device. A high at this bit makes the RTS pin to become
active.

Bit D6: It is used as an internal reset. A high to this bit resets the
device, so that a new mode word can be entered.

Bit D7: It is used in synchronous mode. It enables the receiver to
look for the synchronous data.

Programming Sequence
 When programming the 8251A in asynchronous mode, following sequence must
be followed:

1. Reset (either internal or external)

2. Mode Instruction (specify the asynchronous mode)

3. Command Instruction

 The resetting of the 8251A can be done by loading the control register with a
command word whose D6 bit is high. This bit reset the device. The command word is,
therefore, loaded as:

MVI A, 40 H ; Command word whose D6 bit is high is
loaded to accumulator.

OUT 91 H ; Command word is loaded to control register
whose port address is 91 H as discussed
earlier.

 Now the mode instruction word is loaded to the control register. The mode word
is formed as per the required modes of transmission. For example, for asynchronous
transmission with 7 data bits, 2 stop bit and odd parity; also a 16 X clock is used. For this
the format is shown in figure 14.18 and mode word will be given as:

Fig. 14.18

 MVI A, DA H ; Mode word is loaded to accumulator.

 OUT 91 H ; Mode word is loaded into control register.

 The command word with RTS, error reset and DTR enable with be given as
shown in figure 14.19.

 443

Fig. 14.19

 The command word to be loaded in the control register is given below:

 MVI A, 37 H ; Command word is loaded to accumulator.

 OUT 91 H ; Command word is loaded into control

 register.

 For initializing the 8251A a dummy mode is sent before resetting it. The resetting
is done using command word with D6 bit as 1. The mode word followed by the command
word is sent. With all these requirements the initialization program of 8251A is writhen
as:

 MVI A, 00 H

 OUT 91 H ; Dummy mode word.

 MVIA, 40 H ; Resetting of 8251A by using the command
word with D6 bit as high.

 OUT 91 H

 MVI A, DA H ; Mode word is loaded to accumulator.

 OUT 91 H ; Mode word is loaded into control register.

 MVI A, 37 H ; Command word is loaded to accumulator.

 OUT 91 H ; Command word is loaded into control

 register.

14.8.2 Initialization of 8251A in Synchronous Mode

 When programming the 8251A in asynchronous mode, following sequence must
be followed:

1. Reset (either internal or external)

2. Mode Instruction (specify the Synchronous Mode and number of
synchronizing characters)

 444

3. One or two synchronizing character

4. Command Instruction

 For initializing of the 8251A in synchronous mode the mode instruction word is
to be written only after resetting the PCI as in the case of asynchronous mode. Then with
one or two sync characters, a command word is written in the control register. The mode
word format in synchronous operation is shown in figure 14.20. As discussed earlier the
D1 and D0 bits program the baud rate factor which are set 00 for synchronous operation.

 Fig. 14.20

 The format to be used for command instruction format for the synchronous
operation is the same as for the asynchronous operation which is shown in figure 14.21.
Once the functional definition of the 8251A has been programmed by the mode
instruction and the Sync characters are loaded (in synchronous mode) then the device is
ready to be used for data communication. The command instruction controls the actual
operation of the selected format. Functions such as Enable Transmit/ Receive, Error
Reset etc are provided by the command instruction.

 Once the mode instruction has been written into the 8251A and Sync characters

inserted, then all further “control writes” (1/ =DC) will load a command instruction. A
reset operation (internal or external) will return the 8251A to the mode instruction format.

 445

Fig. 14.21
 In data communication system, it is necessary to examine the status of the active
device to ascertain if errors have occurred or other conditions that require the processor’s
attention. The 8251A has facilities that allow the programmer to read the status of device
at any time during functional operation. A normal read command is issued by the CPU

with 1/ =DC to accomplish the function.

 The microprocessor can output the data to be transmitted only after checking the
status TxRDY (D0) bit of status word as shown in figure 14.22. The sync characters will
automatically be inserted if the buffer of the transmitter becomes empty at any time.

 446

Fig. 14.22

Example 14.1 Write a subroutine program to transmit serially 256 bytes of data stored
in the memory locations starting at 3000 H. The bytes are to be transmitted in
synchronous mode (without parity) with two sync characters using 8251A. Consider 90 H
and 91 H are the port addresses for control/status register and data register respectively.

Solution. The mode word format for the given problem is shown in figure 14.23.

 447

Fig. 14.23

The subroutine program may then be given as:

SUBROUTINE PROGRAM

Label Mnemonics Operand Comments

LXI H, 3000 H ; Initialize H-L register pair for index
pointer.

MVI C, FF H ; Register C to be used as counter.
MVI A, 00 H ; Dummy word
OUT 91 H
MVI A, 40 H ; Command word for resetting
 8251A.
OUT 91 H ; Command word loaded to the

control register.
MVI A, 0C H ; Mode word 0C H is loaded to the

accumulator.
OUT 91 H ; The mode word for two sync

character is loaded to the control
register.

STATUS IN 90 H ; Read the status word.
 ANI 01 H ; Mask all the bits except D0 for
 checking the status.
 JZ STATUS ; If D0 bit is zero jump to STATUS

to read again.
 MOV A, M ; Loads the character to be
 transmitted to the accumulator.
 OUT 91 H ; Character is transmitted.
 DCR C ; Decrements the data in C register

for next byte for transmission.
 JNZ STATUS ; If all bytes are not transmitted then

jump to STATUS to read the next
byte.

 RET ; Returns to main program.

 448

PROBLEMS

1. What are the advantages and disadvantages of serial I/O data transfer over the

parallel I/O data transfer?
2. Name three methods of serial mode of data transfer and explain them in brief.
3. Draw and explain the block diagram of Programmable Communication Interface

8251A.
4. Discuss the Transmission section of 8251A.
5. Discuss the Receiver section of 8251A.
6. Explain the working principle of RS 232 interface.
7. Explain how Programmable Communication Interface 8251A is interface with the

CPU.
8. Draw the schematic diagram of interfacing 8251A with 8085 microprocessor. The

connections should be such that the port address for control register and data
registers are 71 H and 70 H respectively.

9. Explain the mode word format of 8251A.
10. Explain the command word format of 8251A.
11. Explain how the 8251A is initialized in Asynchronous mode.
12. Explain hoe the 8251A is initialized in synchronous mode.
13. Explain the following terms related to 8251A:

 DC / , RxC , RxD, DSR, TxC, TxD, DTR, CTS
14. Explain the following terms related to 8251A:
 RxRDY, TxRDY, TxEMPTY

15
Applications of
Microprocessor

 After the study of all the details of microprocessor 8085, including the assembly
language programming and peripheral devices we are now in a position to design some
microprocessor based systems. Real time clock with on/off timer, running light, washing
machine control, water level control etc. are some designs will be discussed in this
chapter. These designs are supposed to be very interesting and useful. The assembly
language programming of these designs have been verified on M/S Vinytics Kit

15.1 REAL TIME CLOCK WITH ON/OFF TIMER

 In the present section of this chapter, the details of the assembly language
programming of the design of Real Time Clock with On/Off Timer will be discussed. In
this microprocessor based design six FNDs of the microprocessor kit (four of address
field and two of data field) have been used to display the current time. The four 7-
segments of the address field would display hours and minutes of the current time and
two 7- segments of data field would display the seconds of the current time. For example,
current time is 10:25:30, the address and data field of the kit would display as shown in
Fig. 15.1. It would then continuously update the current time after every second. In other
words, it will work as the real time clock (digital clock).

 Fig. 15.1

 450

 For the working of real time clock, the software prepared was checked on the

Vinytics kit (VMC-8506) and found to work satisfactorily. Two monitor programs

(stored in Kit’s ROM /EPROM) at the locations 0347 H (for clearing the display) and

05D0 H (displaying the contents of memory of memory locations 2050 H through 2055 H

in the address and data fields respectively) have been used in the program. Please note

that before calling the display routine, registers A and B are required to be initialized with

either 00 or 01 to indicate to the monitor program as to where the contents of above

mentioned memory locations are to be displayed (e.g. address field or data field) and

whether a dot is to be displayed at the end of address field or not. The assembly language

program was executed to switch ON an electrical appliance after a preset time period.

This program was proved to be very useful microprocessor based system. This type of

microprocessor based system has the useful requirement in research laboratories. An

electronic circuit was also designed which was interfaced with the 8085A microprocessor

through the programmable peripheral Interface (PPI) 8255A. The PPI-8255A was

available with the microprocessor kit.

ASSEMBLY LANGUAGE PROGRAM

 The assembly language program for the universal timer and for switching ON

electrical device is given below:

PROGRAM

Main Program

Label Mnemonics Operand Comments

LXI SP, 27FF H ;Initialize Stack Pointer.
 MVI A, 80H ;Control word for 8255-I.
 OUT 03H ;Work all the ports of 8255-I

as output port .
 CALL 0347 H ;Clears the display. It is the

program stored in ROM of
the kit.

AA XRA A ;Clears the accumulator
 MOV B, A ;Clears the B register also.

 451

 LXI H, 2050 H ;Intialize H-L pair where the
current time is stored.

 CALL 05D0 H ;Displays the current time in
address field. It is the
program stored in ROM of
the Kit.

 MVI A, 01 H ;Stores 01 H in accumulator.
 MVI B, 00 H ;Stores 00 H in B register.
 LXI H, 2054 H ;Initialize H-L register pair

with 2054 H.

 CALL 05D0 H :Displays the current time in

data field.
 CALL ONOFF ;Calls subroutine program to

switch on the electrical
appliance.

 LXI H, 2055 H ;Initialize H-L register pair
with 2055 H.

 MOV A, M ;Moves the least significant
digit (LSD) of current
seconds to the accumulator.

 ADI 01 H ;Add 01 to the accumulator.
 CPI 0A H ;Compares with 0A H.
 JZ RR ;If Acc.=0A H, then jump to

RR, indicating that LSD of
seconds has become 9. Else
goes to next statement.

 MOV M, A ;Moves the accumulator
contents to memory
location addressed by H-L
register pair i.e. current
seconds are stored back in
the memory locations.

DD MVI B, 02 H ;Stores 02 H in accumulator.
YY LXI D, FA00 H ;Intialize D-E register pair

with FA00H.
 CALL DELAY ;Calls the delay program.
 DCR B ;Decrement B- register.
 JNZ YY ;If B≠0 then jump to YY.
 JMP AA ;Jump to AA for the display

of current time.
RR MVI A, 00 H ;LSD of current time

becomes 0, which is stored
in accumulator.

 MOV M, A ;Stores it to the memory
location of LSD of seconds

 452

whose address is given in
H-L register pair.

 DCX H ;Decrement H-L register
pair.

 MOV A, M ;Moves MSD of the current
second to accumulator.

 ADI 01H ;Add 01 H to it
 CPI 06 H ;Compaers if MSD of the

current seconds is 06.
 JZ UU ;If Acc.=06 then jump to

UU, indicating that MSD of
seconds has become 6. Else
goes to next statement.

 MOV M, A ;If A≠06 then stores to the
memory location addressed
by the H-L register pair.

 JMP DD ;Jump to DD for 1 sec.delay.
UU MVI A 00 H ;Store 00 to accumulator.
 MOV M, A ;Stores 00 to the memory

location of MSD of seconds
addressed by the H-L
register pair.

 DCX H ;Decrement H-L register
pair.

 MOV A, M ;Moves the LSD of the
current minutes to
accumulator.

 ADI 01 H ;Add 01 H to the LSD of the
current minutes.

 CPI 0A H ;Compares it with 0A H.
 JZ VV ;If LSD of minutes is 0A H,

then jump to VV else to the
next instruction.

 MOV M, A ;Stores it to the memory
location of LSD of minutes
addressed by H-L register
pair.

 JMP DD ;Jump to DD for 1 sec delay.
VV MVI A, 00 H ;Stores 00 H to accumulator.
 MOV M, A ;Stores 00 to the memory

location of LSD of minutes
addressed by H-L register
pair.

 DCX H ;Decrement H-L register
pair.

 453

 MOV A, M ;Moves the MSD of the
current minutes to
accumulator.

 ADI 01 H ;Add 01 H to the MSD of
the current minutes.

 CPI 06 H ;Compaers if MSD of the
current minutes is 06.

 JZ SS ;If Acc.=06 then jump to SS,
indicating that MSD of
minutes has become 6. Else
goes to next statement.

 MOV M, A ;If Acc≠06 then stores to the
memory location addressed
by the H-L register pair.

 JMP DD ;Jump to DD for delay of 1
sec.

SS MVI A 00 H ;Store 00 to accumulator.
 MOV M, A ;Stores 00 to the memory

location of MSD of
minutes addressed by the
H-L register pair.

 DCX H ;Decrement H-L register
pair.

 MOV A, M ;Moves the LSD of the
current hrs. to accumulator.

 ADI 01 H ;Add 01 H to the LSD of the
current hrs.

 * CPI 03 H ;Compares it with 03 H.
 JZ LL ;If LSD of hrs is 03 H, then

jump to LLelse to the next
instruction.

 MOV M, A ;Stores it to the memory
location of LSD of hrs.
addressed by H-L register
pair.

 CPI 0A H ;It is also compared by 0AH.
 JZ WW H ;If it is 0A H, then jump to

EE else go to next
instruction.

 MOV M, A ;Stores it to memory
locations addressed by H-L
register pair.

 JMP DD ;Jump to DD for delay of
1sec.

LL DCX H ;Decrement H-L register
pair.

 454

 MOV A, M ;Moves the contents of
memory location addressed
by H-L register pair to Acc.

 ** CPI 01 H ;Compares it with 01 H.
 JZ GG ;If it is 01 H, then jump to

GG H.
 INX H ;Increment the H-L register

pair.
 MOV A, M ;Moves the contents of MH-L

to the Acc.
 ADI 01 H ;Add 01 H to it.
 CPI 0A H ;Compares it with 0A H.
 JZ WW ;If it is 0A H then jump to

WW.
 MOV M, A ;Else stores the accumulator

contents in MH-L.
 JMP DD ;Jumps to DD for the delay

of 1sec.
GG MVI A, 00 H ;Stores 00 H to Acc.
 MOV M, A ;Moves 00 H to the memory

location addressed by H-L
register pair.

 INX H ;Increments the H-L register
pair.

 *** MVI A, 01 H ;Loads Acc. to 01 H.
 MOV M, A ;Moves the Acc. Contents to

MH-L.
 JMP DD ;Jumps to DD for the delay

of 1sec.
WW MVI A, 00 H ;Stores 00 H to accumulator.

 MOV M, A ;Stores it to MH-L.
 DCX H ;Decrements the H-L

register pair.
 MOV A, M ;Moves MH-Lto accumulator.
 ADI 01 H ;Add 01 H to it.
 MOV M, A ;Acc. Contents are loaded to

MH-L.
 JMP DD ;Jump for delay of 1sec.

Delay Subroutine Program

Label Mnemonics Operand Comments

DELAY DCX D ;Decrement D-E register
pair.

 455

 MOV A, D ;Moves the contents stored
in MD-E to Acc.

 ORA E ;The contents of A and E
registers are ORed bit by
bit.

 JNZ DELAY ;If the result is not zero then
jump to DELAY else next
instruction.

 RET ;Return to main program.

Subroutine Program to check the time (ON time) after every second

Label Mnemonics Operand Comments

ONOFF LXI H, 2055 H ;Initialize H-L register pair
with 2055 H.

 LXI D, 205C H ;Initialize D-E register pair
with 205C H.

 MVI B, 06 H ;Stores 06 H to B-register.
AGAIN LDAX D ;Loads the contents of MD-E

to the accumulator.
 CMP M ;Compares it with MH-L.
 RNZ ;Return if not zero.
 DCX H ;Decrements H-L register

pair.
 DCX D ; Decrements D-E register

pair.
 DCR B ;Decrements the contents of

B-register.
 JNZ AGAIN ;Jump if not zero to AGAIN.
 MVI A, 01 H ;Stores 01 H to Acc.

 OUT 00 H :D0 bit of port A of 8255

becomes high to energies
the relay (to switch on the
appliance).

 RET ;Returns to main program.
DATA

2050 H - MSD of hrs.

2051 H - LSD of hrs.

2052 H - MSD of Minutes Current Time

2053 H - LSD of Minutes

2054 H - MSD of Seconds

2055 H - LSD of Seconds

 456

2056 H - 01H (if wish to switch ON the electrical appliance)

2057 H - MSD of Hrs.

2058 H - LSD of Hrs.

2059 H - MSD of Minutes

205A H - LSD of Minutes Time For On Electrical

205B H - MSD of Seconds Appliance

205C H - LSD pf Seconds

This program written in assembly language is self-explanatory. The comment

column will help in understanding the operation of the project. The current time is stored

in the beginning before the start of the program in the memory locations starting at 2050

H to 2055 H. In the memory location 2056 H, 01H is stored if we wish to switch on the

electrical device connected with the PPI-8255 A; otherwise any number can be stored in

this memory location. If 01H is stored in the memory location 2056H, then the time for

switching ON the electrical appliance is stored in the memory location starting at 2057 H

to 205C H. Suppose current time, when we wish to start the program is:

Hrs. Min. Sec.

02 25 30

And we wish to switch on the electrical appliance at:

Hrs. Min. Sec.

04 23 00
The data to be stored in the memory locations starting at 2050 to 205C is given below:
Memory Location Data

2050 H 00 H 02 Hrs.
2051 H 02 H
2052 H 02 H 25 Minutes Current Time
2053 H 05 H
2054 H 03 H 30 Seconds
2055 H 00 H
2056 H 01 H 01 for switch ON the appliance

2057 H 00 H 04 Hrs.
2058 H 04 H Time when
2059 H 02 H 23 Minutes electrical
205A H 03 H appliance to
205B H 00 H 00 Seconds ON
205C H 00 H

 457

A relay circuit to be connected to the Programmable Peripheral Interface IC 8255-

I is shown in Fig. 15.2.

 Fig.15.2

This circuit consists of a relay, a diode and transistor. The base of the transistor is
connected to PA0 of 8255 although a 10 k resistance. A diode IN4007 is connected in
parallel with coil of 12V relay. The electrical appliance is connected to the a.c.mains
through the N/O pins of the relay.

The working of this circuit may be explained as:

When a high signal is available through the software to a PA0 (D0 bit of port A) of
8255-I, the transistor goes into saturation. The relay is energized. The N/O terminals of
the relay get connected and electrical appliance become ON.

 When the program is executed, the current time is displayed in the address and

data fields of the microprocessor kit. The current time is updated after every second by
the programming. For this LSD (Least significant Digit) of the seconds is transferred to
accumulator, which is added with 1. The contents after addition are compared with 0A H
(decimal number 10). In other words LSD of the second is continuously increased (after
every one second) by 1 to reach to 0A H. When it reaches to 0A H then program will
jump to MSD (Most Significant Digit) of the seconds after storing 00H in the memory
location 2050 H.

 458

Now MSD of the second is moved into accumulator and then increased by 1
which then compared with 06H.

 When MSD of the second reaches to 06H, it will make 00H to its corresponding
location. The program will then jump to LSD of the minutes. The program will execute in
such a way the minutes will be checked after every one minute and it will be updated in
the address field so that it displays up to 59H. After that, it becomes 00 H.

 In the similar fashion, Hrs. will be checked after every hour so that it displays the
updated current time.

 To switch ON the electrical appliance at the predetermined time the subroutine
program was developed. The subroutine program is executed after every second to check
if the current time is equal to the time when the electrical appliance is to switched ON.
When the current time is equal to the ON time (required time), 8255A sends a high signal
to PA0 (D0 bit of Port A). The high signal energies the relay and appliance becomes ON.
After switching ON the appliance the program will, however, continue displaying the
updated time.

The observations were made to check the ON time and found to work fine. The
working of the real time clock was also very accurate. It was proved to be satisfactory
assembly language programming of the 8085A.

Further, to change the real time clock to display the timing in address and data

field in 24 Hrs., i.e. after 12:59:59 it should display 13:00:00 onwards, rather than
01:00:00 onwards. So certain changes in the main program should be incorporated. The
instructions marked by stars (* , ** , ***) be replaced as given below:

* Replace the instruction CPI 03 H by CPI 05 H
** Replace the instruction CPI 01 H by CPI 02 H
*** Replace the instruction MVI A, 01 H by MVI A, 00 H.

15.2 MICROPROCESSOR BASED LED DIAL CLOCK

 Here the design of microprocessor based LED dial clock has been discussed
which runs using microprocessor 8085. It works purely on the basis of the software; and
some hardware has also been used. The software is prepared in the assembly language of
8085A microprocessor. This program was tested on Vinytics 8085 µp kit and found to
work very fine.

 In this dial clock 73 LEDs are used which are interfaced with the different ports
of two 8255 PPI ICs available on µp kit. Out of 73 LEDs, 12 LEDs of Amber color are
used to show hours, 60 LEDs of red color are used to show minutes and one green LED
alternately glows for half second showing that the seconds are continuously being
counted by the clock. All these LEDs are connected in a circle in the form of a dial of a
wall clock. The beauty of this project is the software part; and the students of Electronics
discipline would definitely like to design this project or this idea may be used in other

 459

projects also. It is worthwhile to mention that no electronic circuit was used, except the
LEDs are connected to the two PPI-8255 ICs available with the microprocessor kit.

Figures 15.3 and 15.4 show the circuit diagrams to be interfaced with the µp-Kit.

The cathodes of all the 12 Amber colored Hours LEDs are connected to the ground. The
Anodes of these LEDs are connected to the Port A and Port B of 8255 –II, the anodes of
LEDs showing Hrs 1 to 8 are connected respectively to D0 –D7 Bits of Port A of 8255-II
and the anodes of LEDs showing Hours 9 to 12 are connected respectively to D0 – D3
bits of Port B of 8255 – II. Look – up table 15.1 provides Logic 1 to Hours LEDs 1-8.
However, logic 1 to Hours LEDs 9 – 12 are provided using the software. The bit D0 of
Port C lower of 8255 – II is connected to the anode of Green LED (showing second) and
cathode of this LED is also grounded.

Fig. 15.3

The minutes red colored 60 LEDs are divided into 6 Groups (Group 0 to Group 5)
and each group contains 10 LEDs. The cathodes of each group are connected together.
The D0 – D5 bits of Port B of 8255 – I are connected to the cathodes (Common Points)
of Group 0 to Group 5 LEDs respectively. The ground signal is provided to the cathode
pin of each Group through the software using Look up table 15.2.

 460

Fig. 15.4

The anodes of 10 LEDs (1 to 10) of each of 6 Groups are connected in parallel,
i.e. LED No. 1 of each Group is connected together, and similarly LED No 2 of each

 461

Group is connected together and so on. In this way 10 different Anode leads (1 to 10)
are finally available to be connected to different pins of Port A and Port C of 8255 – I.
D0 – D7 bits of Port A of 8255 – I are connected to 1 – 8 Anodes leads and 9 – 10 Anode
leads are connected to D0 – D1 bits of Port C of 8255– I respectively. Look up table III
provides Logic 1 to 1 – 8 Anode Leads; and to the 9 – 10 Anode leads the Logic 1, is
provided by the software.

Table –15.1
Memory Data Binary Comments
Location Stores Equivalent (Port A of 8255-II)

2101 H 01H 0000 0001 Provides Logic 1 to D0 bit (Hrs.1)
2102 H 02H 0000 0010 Provides Logic 1 to D1 bit (Hrs.2)

2103 H 04H 0000 0100 Provides Logic 1 to D2 bit (Hrs.3)

2104 H 08H 0000 1000 Provides Logic 1 to D3 bit (Hrs.4)

2105 H 10H 0001 0000 Provides Logic 1 to D4 bit (Hrs.5)

2106 H 20H 0010 0000 Provides Logic 1 to D5 bit (Hrs.6)

2107 H 40H 0100 0000 Provides Logic 1 to D6 bit (Hrs.7)

2108 H 80H 1000 0000 Provides Logic 1 to D7 bit (Hrs.8)

Table – 15.2

Memory Data Binary Comments
Location Stores Equivalent (Port B of 8255 - I)
2200 H FEH 1111 1110 Provides Logic 0 to D0 bit (Group 0)

2201 H FDH 1111 1101 Provides Logic 0 to D1 bit (Group 1)

2202 H FBH 1111 1011 Provides Logic 0 to D2 bit (Group 2)

2203 H F7H 1111 0111 Provides Logic 0 to D3 bit (Group 3)

2204 H EFH 1110 1111 Provides Logic 0 to D4 bit (Group 4)

2205 H DFH 1101 1111 Provides Logic 0 to D5 bit (Group 5)

Table – 15.3

Memory Data Binary Comments
Location Stores Equivalent (Port A of 8255 – I)

2300 H 01H 00000001 Provides Logic 1 to D0 bit

2301 H 02H 00000010 Provides Logic 1 to D1 bit
2302 H 04H 00000100 Provides Logic 1 to D2 bit
2303 H 08H 00001000 Provides Logic 1 to D3 bit
2304 H 10H 00010000 Provides Logic 1 to D4 bit
2305 H 20H 00100000 Provides Logic 1 to D5 bit
2306 H 40H 01000000 Provides Logic 1 to D6 bit
2307 H 80H 10000000 Provides Logic 1 to D7 bit

 462

The software provides a signal continuously to Green LED so that it remains ON

and OFF alternately for half a second. The minutes 60 LEDs glow one by one after every
one minute. Port B of 8255 – I provides a low voltage (0 volt) to the cathodes of one
block for 10 minutes and to the anode of these LEDs (1 to 10) are provided positive
voltage (logic 1) alternately for one minute through D0 – D7 bits of Port A and D0 – D2
bits of Port B of 8255 – I. However, Hours’ 12 Amber colored LEDs glow one by one
after every an Hour time, as positive voltage (logic 1) is provided to the anodes of these
LEDs after every an Hour. As discussed earlier positive voltage to Hours LEDs (1 to 8)
are provided by D0 – D7 bits of Port A of 8255 – II and to Hours LEDs (9 to 12) are
provided by D0 –D3 bits of Port B of 8255 – II after every an hour time. All the LEDs
glow in a sequence as the minutes and hours hands move in an analog clock.

 The current time is stored in the beginning in some memory locations. Hours,
minutes and seconds of the current time are stored in the memory locations say 2000 H to
2002 H respectively. Figures 15.5 show the flow chart of the program. The software in
the assembly language of 8085A for providing appropriate signal to different LEDs is
given below:

Main Program

MEMORY LOCATIONS WHERE CURRENT TIME IS STORED

2000H - CURRENT HRS

2001H - CURRENT MINUTES

2002H - CURRENT SECONDS

Label Mnemonics Operand Comments

LXI SP, XXXX H ;Initialize Stack Pointer.
 MVI A, 80H ;Control word for 8255-I.
 OUT 03H ;Works all the ports of 8255-

I as output port
 OUT 0B H ;Works all the ports of 8255-

II as output port.
START LXI H, 2000 H ;Loads the H-L register pair

with the address of Hrs. of
current time.

 MOV A, M ;Moves the Hrs. of current
time to accumulator.

 CPI 09 H ;It is compared with 09 H.

 463

 464

 465

Fig. 15.5

 JC PT0 ;If ACC<9, then jump to

PT0.
 JZ PT1 ;If ACC=9, then jump to

PT1.
 CPI 10 H ;Accumulator contents are

again compared with 10 H.
 JZ PT2 ;If ACC=10 then jump to

PT2.
 CPI 11 H ;If ACC=11 then jump to

PT3.
 MVI A, 00 H

 466

 OUT 08 H ;Provides logic 0 to all the
bits of Port A of 8255-II.

 MVI A, 08 H
 OUT 09 H ;Provides logic 1 to D3 bit

of port B of 8255-II.
 JMP PT5 ;Jumps to PT5.
PT1 MVI A, 00 H
 OUT 08 H ;Provides logic 0 to all the

bits of port A of 8255-II.
 MVI A, 01 H
 OUT 09 H ;Provides logic 1 to D0 bit

of port B of 825-II.
 JUMP PT5 ;Jumps to PT5.
PT2 MVI A, 00 H
 OUT 08 H ;Provides logic 0 all the bits

of port A of 8255-II.
 MVI A, 02 H
 OUT 09 H ;Provides logic 1 to D1 bit

of Port B of 8255-II.
 JMP PT5 ;Jumps to PT5.
PT3 MVI A, 00 H
 OUT 08 H ;Provides logic 0 all the bits

of port A of 8255-II.
 MVI A, 04 H
 OUT 09 H ;Provides logic 1 to D2 bit

of port B of 8255-II.
 JMP PT5 ;Jumps to PT5.
PT0 MOV E, M ;Hrs. of current time is less

than 9 which is loaded to E
register.

 MVI A, 00 H
 OUT 09 H ;Provides logic 0 to all the

bits of port B of 8255-II.
 MVI D, 21 H
 LDAX D ;Loads the Acc with the data

as per the table 15.1in
respect of the current time,
which is less than 9.

 OUT 08 H ;Provides logic w to one of
the bits of port A of 8255-II
as per the look up table
15.1.

PT5 INX H ;H-L register pair will
indicate the minutes of the
current time.

 467

 MOV A, M ;Moves current minutes to
ACC.

 ANI F0 H ;Make lower Nibble of ACC
to zero.

 MVI B, 04 H
LOOP RLC ;Rotate ACC contents four

times to shift higher Nibble
of ACC to lower Nibble
and lower which are zero is
shifted to higher Nibble.

 DCR B
 JNZ LOOP
 MOV E, A ;ACC contents are loaded to

E register.
 INR D
 LDAX D
 OUT 01 H ;Provides logic 0 to the

cathodes of one group from
group 0 to group 5 as per
the look up table 15.2.

 MOV A, M
 ANI 0F H ;Provides logic 0 to higher

Nibble of ACC.
 CPI 09 H ;Compared with 09.
 JZ AK ;If ACC=09 then jump to

AK.
 CPI 08 H ;Compared with 08.
 JZ AK1 ;If ACC=08 then jump to

AK1.
 MVI A. 00 H
 OUT 02 H ;Provides logic 0 to all the

bits of Port C of 8255-I.
 MOV E, A
 INR D
 LDAX D ;Provides logic 1 to one of

the bits of D0-D7 of port A
of 8255-I as per the look-up
table 15.3.

 OUT 00 H
 JMP AK2 ;Jump to AK2.
AK1 MVI A, 00 H
 OUT 00 H ;Provides logic 0 to all the

bits of Port A of 8255-I.
 MVI A, 01 H
 OUT 02 H ;Provides logic 1 to D0 bit

of port C of 8255-I.

 468

 JMP AK2 ;Jump to AK2.
AK MVI A, 00 H
 OUT 00 H ;Provides logic 0 to all the

bits of Port A of 8255-I.
 MVI A, 02 H
 OUT 02 H ;Provides logic 1 to D1 bit

of port C of 8255-I.
AK2 INX H
PT7 MOV A, M ;Moves current seconds to

ACC.
 ADI 01 H ;ACC=ACC+1
 DAA ;Decimal adjust the

Accumulator.
 CPI 60 H ;Is ACC=60.
 JZ PT6 ;If yes jump to PT6.
 MOV M, A ;Else stores the current

seconds to its
corresponding locations.

 CALL DELAY ;Calls subroutine program
for one second dealay.

 JMP PT7 ;Jumps to PT7.
PT6 MVI A, 00 H
 MOV M, A ;Stores 00 to Memory

locations of current
seconds.

 DCX H
 MOV A, M ;Minutes of the current time

is loaded to the
accumulator.

 ADI 01 H ;ACC=ACC+1
 DAA ;Decimal adjust the

Accumulator.
 CPI 60 H ;Is ACC=60.
 JZ PT8 ;If yes jump to PT8.
 MOV M, A ;Stores minutes to the

Minutes locations.
 JMP START ;Jump to START to glow

minutes and Hours.
PT8 MVI A, 00 H
 MOV M, A ;Stores 00 to Memory

locations of current
minutes.

 DCX H
 MOV A, M ;Hrs. of the current time is

loaded to the accumulator.
 ADI 01 H ;ACC=ACC+1

 469

 DAA ;Decimal adjust the
Accumulator.

 CPI 13 H ;Is ACC=13.
 JZ PT9 ;If yes jump to PT9.
 MOV M, A ;Stores Hrs. to the Hrs.

locations.
 JMP START ;Jump to START to glow

minutes and Hours.
PT9 MVI A, 01 H
 MOV M, A ;Stores Hrs.=01 in Hrs,

locations instead of 13.
 JMP START ;Jump to START to glow

minutes and Hours.

Delay Subroutine Program

Label Mnemonics Operand Comments

DELAY MVI A, 01 H
 OUT 0A H ;Seconds LED glows for

half second.
 LXI D, FA00 H
NXT1 DCX D ;Decrement D-E register

pair.

 MOV A, D ;Moves the contents stored

in MD-E to Acc.
 ORA E ;The contents of A and E

registers are ORed bit by
bit.

 JNZ NXT1 ;If the result is not zero then
jump to nxt1 else next
instruction.

 MVI A, 00 H
 OUT 0A H ;Seconds LED remains off

for half second.
 LXI D, FA00 H
NXT2 DCX D ;Decrement D-E register

pair.

 MOV A, D ;Moves the contents stored

in MD-E to Acc.

 470

 ORA E ;The contents of A and E
registers are ORed bit by
bit.

 JNZ NXT2 ;If the result is not zero then
jump to nxt1 else next
instruction.

 RET ;Return to main program.

15.3 DESIGN OF MICROPROCESSOR BASED RUNNING LIGHT

 The details discussed in the foregoing section of this chapter, may also be used to
design the running light. In this project it is expected that 60 lEDs should glow in a
sequence one after another in a preset time say one second. The LEDs are connected as
shown in figure 15.6. The logic used in this project is the same as in discussed in the
microprocessor based dial clock. The assembly language program is self explanatory
which is given below. The look-up table for the same is given in table 15.4 and 15.5.

Label Mnemonics Operand Comments

 MVI A, 80H ;Control word for 8255-I.
 OUT 03H ;Works all the ports of 8255-

I as output port
 MVI A, 00 H ;00 is loaded to accumulator.
 STA 2054 H ;Store 00 to some location

say 2054 H
 STA 2055 H and 2055 H
START LXI H, 2054 H ;Loads the H-L register pair

with the address 2054 H.
 MOV E, M ;Data of 2054 is loaded to

the E register.
 MVI D, 21 H
 LDAX D ;Data of one memory

location 2100 H to 2105 H
is loaded to accumulator.

 OUT 01 H ;Cathode of one block (1 –
5) will be low.

 INX H ;H-L register pair will
incremented.

 MOV A, M ;Moves the data in next
location will be loaded to
accumulator.

 CPI 09 H ;Compared with 09.
 JZ AK ;If ACC=09 then jump to

AK.
 CPI 08 H ;Compared with 08.

 471

 JZ AK1 ;If ACC=08 then jump to
AK1.

 MVI A. 00 H
 OUT 02 H ;Provides logic 0 to all the

bits of Port C of 8255-I.
 MOV E, M
 INR D
 LDAX D ;Provides logic 1 to one of

the bits of D0-D7 of port A
of 8255-I as per the look-up
table.

 OUT 00 H
 JMP AK2 ;Jump to AK2.
AK1 MVI A, 00 H
 OUT 00 H ;Provides logic 0 to all the

bits of Port A of 8255-I.
 MVI A, 02 H
 OUT 02 H ;Provides logic 1 to D1 bit

of port C of 8255-I.
 JMP AK2 ;Jump to AK2.
AK MVI A, 00 H
 OUT 00 H ;Provides logic 0 to all the

bits of Port A of 8255-I.
 MVI A, 01 H
 OUT 02 H ;Provides logic 1 to D0 bit

of port C of 8255-I.
AK2 MOV A, M ;Moves current value to

ACC.
 ADI 01 H ;ACC=ACC+1
 CPI 0A H ;Is ACC=0A H.
 JZ RR ;If yes jump to RR.
 MOV M, A ;Else stores the current

seconds to its
corresponding locations.

PP MVI B, 02 H ;02 is loaded to B register
for the loop.

YY LXI D, FA00 H
NXT1 DCX D ;Decrement D-E register

pair.
 MOV A, D ;Moves the contents stored

in MD-E to Acc.
 ORA E ;The contents of A and E

registers are ORed bit by
bit.

 472

 JNZ NXT1 ;If the result is not zero then
jump to nxt1 else next
instruction.

 DCR B :Decrement B reguster
 JNZ YY
 JMP START ;Jumps to START.
RR MVI A, 00 H
 MOV M, A ;Stores 00 to current

Memory locations.
 DCX H
 MOV A, M ;Current value is loaded to

the accumulator.
 ADI 01 H ;ACC=ACC+1
 CPI 06 H ;Is ACC=06.
 JZ UU ;If yes jump to UU.
 MOV M, A ;Stores in memory location.
 JMP PP ;Jump to PP for delay.
UU MVI A, 00 H
 MOV M, A ;Stores 00 to Memory

locations of current.
 JMP PP ;Jump to PP for delay.

 473

Fig. 15.6

 474

Table – 15.4

Memory Data Binary Comments
Location Stores Equivalent (Port B of 8255 - I)
2100 H FEH 1111 1110 Provides Logic 0 to D0 bit (Group 0)

2101 H FDH 1111 1101 Provides Logic 0 to D1 bit (Group 1)

2102 H FBH 1111 1011 Provides Logic 0 to D2 bit (Group 2)

2103 H F7H 1111 0111 Provides Logic 0 to D3 bit (Group 3)

2104 H EFH 1110 1111 Provides Logic 0 to D4 bit (Group 4)

2105 H DFH 1101 1111 Provides Logic 0 to D5 bit (Group 5)

Table – 15.5

Memory Data Binary Comments
Location Stores Equivalent (Port A of 8255 – I)

2200 H 01H 00000001 Provides Logic 1 to D0 bit

2201 H 02H 00000010 Provides Logic 1 to D1 bit
2202 H 04H 00000100 Provides Logic 1 to D2 bit
2203 H 08H 00001000 Provides Logic 1 to D3 bit
2204 H 10H 00010000 Provides Logic 1 to D4 bit
2205 H 20H 00100000 Provides Logic 1 to D5 bit
2206 H 40H 01000000 Provides Logic 1 to D6 bit
2207 H 80H 10000000 Provides Logic 1 to D7 bit

15.4 MICROPROCESSOR BASED AUTOMATIC SCHOOL BELL SYSTEM
 This is an effective and useful project for educational institutes. In most of
educational institutes, the peon rings the bell after every period (usually a period is of 40
minutes duration). The peon has to depend on his wrist watch or clock and sometimes he
would even forget to ring the bell in time. In the present system, the human error has
been eliminated. Every morning, when the school starts, someone has just to switch on
the system and it will thereafter work automatically.

 The automatic microprocessor based school bell system presented here has been
tested on a Vinytics’ microprocessor -8085 kit (VMC-8506). The kit displays the period
number on two most significant digits of address field and minutes of the period elapsed
on the next two digits of the address field. The data field of the kit displays seconds
continuously.

 The idea used here is very simple. The programmable peripheral interfacing (PPI)
IC INTEL 8255-I available with the kit has been used. The bit 0 of port A (PA0) is
connected to the base of a transistor through a resistance as shown in figure 15.7. It is
used to energize the relay when PA0 pin of 8255-I is high. The siren, hooter or any bell
voice system with an audio amplifier of proper wattage (along with 2 to 3 loudspeakers)

 475

may be installed in the school campus. The relay would get energized after every 40
minutes for a few seconds (say 6 Seconds).

Fig. 15.7
The assembly language program and data used for the purpose are given below in

the mnemonic and machine code. The program is self explanatory.

Address Opcode Label Mnemonic Comments
 & Operand

20FC H 3E 80 MVI A, 80 H ;Initialize 8255-1 as

output port.
20FE H DE 03 OUT 03 H
2100 H 31 FF 27 LXI SP, 27FF H ;Initialize the stack

pointer.
2103 H CD 47 03 CALL 0347 H ;Clear the display.
2106 H C3 69 21 JMP TT ;Jump to ring the bell.
2109 H AF AA XRA A ;Put A = 0.
210A H 47 MOV B, A ;Put B=0.
210B H 21 50 05 LXI H, 2050 H ;Initialize address of

the display.
210E H CD D0 05 CALL 05D0 H ;To display period no.

and minutes to
address field.

2111 H 3E 01 MVI A, 01 H ;Put A = 01.
2113 H 06 00 MVI B, 00 H ;Put A = 00.
2115 H 21 54 20 LXI H, 2054 H ;Initialize seconds

locations.
2118 H CD D0 05 CALL 05 D0 H ;Displays seconds in

data field.

 476

211B H 21 55 20 LXI H, 2055 H ;Initialize address of
LSD of current
seconds.

211E H 7E MOV A, M ;Moves LSD of
current seconds to
accurmulator.

211F H C6 01 ADI 01 H ;Add 1 to accumulator
2121 H FE 0A CPI 0A H ;Compares LSD of

seconds with 0A
(decimal no. 10).

2123 H CA 36 21 JZ RR ;If LSD of seconds
completes 09 then
jump to RR.

2126 H 77 MOV M, A ;Moves the ACC
contents to 2055 H
location.

2127 H 06 02 DD MVI B, 02 H ; Delay program
2129 H 11 00 FA YY LXI D, FA 00 H for
212C H CD 00 25 CALL 2500 H one
212F H 05 DCR B second.
2130 H C2 29 21 JNZ YY
2133 H C3 09 21 JMP AA ;Jump to AA for

display the time.
2136 H 3E 00 RR MVI A, 00 H ;Put A=00.
2138 H 77 MOV M, A ;Store ACC to

memory location.
2139 H 2B DCX H ;Decrement the H-L

register pair content.
213A H 7E MOVE A, M ;Moves the MSD of

second to ACC.
213B H C6 01 ADI 01 H ;Add 01 to ACC.
213D H FE 06 CPI 06 H ;Compares MSD of

seconds with 06H.
213F H CA 46 21 JZ UU ;If seconds completes

59 jump to UU.
2142 H 77 MOV M, A ;Moves Acc. contents

to memory location.
2143 H C3 27 21 JMP DD ;Jumps for delay of 1

second.
2146 H 3E 00 UU MVI A, 00 H ;Put A=0 after

completing 59 Sec.
2148 H 77 MOV M, A
2149 H 2B DCX H
214A H 7E MOV A, M ;Moves LSD of

current minutes to
accumulator.

 477

214B H C6 01 ADI 01 H ;Adds 01 to ACC.
214D H FE 0A CPI 0A ;Compares ACC to

0A.
214F H CA 56 21 JZ VV ;Jumps to VV if LSD

of minutes
completes 09.

2152 H 77 MOV M, A ;Moves ACC contents
to memory location.

2153 H C3 27 21 JMP DD ;Jumps for delay of 1
second.

2156 H 3E 00 VV MVI A, 00 H
2158 H 77 MOV M, A
2159 H 2B DCX H ;Decrement the

contents of H-L
register pair.

215A H 7E MOV A, M ;Moves MSD of
minutes to ACC.

215B H C6 01 ADI 01 H ;Add 1 to it.
215D H FE 04 CPI 04 H ;Compares ACC

contents with 04 H.
215F H CA 66 21 JZ SS ;If minutes 40 then

jumps to SS.
2162 H 77 MOV M, A
2163 H C3 27 21 JMP DD ;Jumps for delay of 1

second.
2166 H 3E 04 SS MVI A, 04 H ;Put A=4.
2168 H 77 MOV M, A
2169 H AF TT XRA A ;Put A=0.
216A H 47 MOV B, A ;Put b=0.
216B H 21 50 20 LXI H, 2050 H
216E H CD D0 05 CALL 05 D0 H ;Displays the period

No. and minutes in
address field.

2171 H 3E 01 MVI A, 01 H ;Put A=01.
2173 H 06 00 MVI B, 00 H ;Put B=00.
2175 H 21 54 20 LXI H, 2054 H
2178 H CD D0 05 CALL 05 D0 H ;Displays the seconds

in data field.
217B H 3E 01 MVI A, 01 H
217D H D3 00 OUT 00 H ;Excite 8255-I to

energize the relay
(rings the bell).

217F H 21 55 20 LXI H, 2055 H

 478

2182 H 3E 00 MVI A, 00 H ; Puts 00 to
2184 H 77 MOV M, A 2055 H
2185 H 2B DCX H
2186 H 77 MOV M, A to
2187 H 2B DCX H
2188 H 77 MOV M, A 2052 H
2189 H 2B DCX H
218A H 77 MOV M, A
218B H 2B DCX H
218C H 7E MOV A, M ;Brings the LSD of

current period
number to ACC.

218D H C6 01 ADI 01 H ;Add 1 to it.
218F H FE 0A CPI 0A H ;Compares with 0A.
2191 H CA 98 21 JZ XX ;If LSD of period

number complete 09
then jump to XX.

2194 H 77 MOV M, A ;Else stores it to
memory location.

2195 H C3 A0 21 JMP XY ;Jump to XY.
2198 H 3E 00 XX MVI A, 00 H ;Puts A=00.
219A H 77 MOV M, A ;Stores MSD of

period number to
accumulator.

219B H 2B DCX H
219C H 7E MOV A, M ;Stores MSD of

period number to
accumulator.

219D H C6 01 ADI 01 H ;Adds 1 to it.
219F H 77 XXX MOV M, A ;Stores it to memory

location.
21A0 H 06 02 XY MVI B, 02 H ; Delay program
21A2 H 11 00 FA XYZ LXI D, FA 00 H for
21A5 H CD 00 25 CALL 2500 H one
21A8 H 05 DCR B second.
21A9 H C2 A2 21 JNZ XYZ
21AC H AF XRA A ;Puts A=0.
21AD H 47 MOV B, A ;Puts B=0 also.
21AE H 21 50 20 LXI H, 2050 H ;Program
21B1 H CD D0 05 CALL 05D0 H to
21B4 H 3E 01 MVI A, 01 H display the
21B6 H 06 00 MVI B, 00 H period number
21B8 H 21 54 20 LXI H, 2054 H minutes
21BB H CD D0 05 CALL 05D0 H and
21BE H 21 55 20 LXI H, 2055 H seconds.

 479

21C1 H 7E MOV A, M ;Stores LSD of
current seconds to
ACC.

21C2 H C6 01 ADI 01 H ;Adds 1 to it.
21C4 H FE 06 CPI 06 H ;Compares it with 06.
21C6 H C2 9F 21 JNZ XXX ;If not 06 then jump

to XXX.
21C9 H 3E 00 MVI A, 00 H ;Put A=0 .
21CB H D3 00 OUT 00 H ;Output to 8255-I to

de-energize the
relay.

21CD H C3 09 21 JMP AA ` ;Repeat for the next
period.

DELAY SUBROUTINE AT MEMORY LOCATION 2500 H

2500 H 1B NEXT DCX D
2501 H 7A MOV A, D
2502 H B3 ORA E
2503 H C2 00 25 JNZ NEXT
2506 H C9 RET

DATA TO BE FILLED BEFORE THE EXECUTION OF THE PROGR AM

2050 H 00 MSD OF PERIOD NO. IS STORED 00.

2051 H 00 LSD OF PERIOD NO. IS STORED 00.

2052 H 00 MSD OF MINUTES IS STORED 00.

2053 H 00 LSD OF MINUTES IS STORED 00.

2054 H 00 MSD OF SECONDS IS STORED 00.

2055 H 00 LSD OF SECONDS IS STORED 00.

 First, the program and data are entered in the microprocessor kit. When the
program is run a bell sound will be heard for few seconds (say 6 seconds). This will be
repeated after every 40 minutes. The period number will be displayed in the two higher
digits of the address field. The minutes and seconds of the time elapsed will be displayed
in the rest two digits of lower digits of address field and two digits of the data field.

 The address and data fields of the microprocessor kit would display the period
number and elapsed minutes and seconds in the address and data fields as given below
(fig. 15.8). This figure indicate that period No. is 1, minutes and seconds elapsed are 0, 0
respectively.

 480

Fig. 15.8
15.5 MICROPROCESSOR BASED TRAFFIC LIGHT
 The traffic light controller, which is generally seen at the crossing of the roads,
may be designed using the assembly language programming of the microprocessor
8085A. The traffic light controller suggested in this section uses four sets of three LEDs
(red, yellow and green) arranged at the four sides of the crossing as shown in figure 15.9.
The microprocessor kit (M/S Vinytics) was used to design the traffic light controller.

Fig. 15.9

 481

The ports of PPI 8255-I (Port A, Port B, Port CLower and Port CUpper) available
with the kit were used as the output ports. The Red, Yellow and Green LEDs of North are
connected to PA0, PA1 and PA2 (bits 0, 1 and 2 of port A) pins of 8255-I respectively.
The bits 0, 1, 2 of port B (PB0, PB1 and PB2) were connected to the red, yellow and green
LEDs of South respectively. Similarly, PC0, PC1 and PC2 of port CLower and PC4, PC5 and
PC6 of port CUpper were connected to the red, yellow and green LEDs of East and West
sides.

 Now the following four points occurs for the traffic to control:

(1) First traffic to east west direction is allowed for some time (delay time of 60

seconds say) and traffic to north and south side is not allowed for the sane delay
time. This is possible if Red LEDs of north and south (PA0 and PB0 both are high)
and Green LEDs of East and West (PC2 and PC6 are also high) glow.

(2) The yellow lights of east-west and north-south sides are allowed to glow to clear

the traffic of these directions for some time (say 20 seconds). The green LEDs of
east and west, and red LEDs of north and south are to be remained off for the
same time. This condition will be satisfied if PC1 and PC5, and PA1 and PB1 are
high; and PA0 and PB0, PC2 and PC6 are low.

(3) Now the traffic to north and south side is allowed for the delay time of 60 seconds

and traffic to east west direction is not allowed for the sane delay time. This is
possible if green LEDs of north and south (PA2 and PB2 both are high) and red
LEDs of East and West (PC0 and PC4 are also high) glow.

(4) Again the yellow lights of east-west and north-south sides are allowed to glow to

clear the traffic of these directions for some time (say 20 seconds). The green
LEDs of north and south, and red LEDs of east and west are to be remained off
for the same time. This condition will be satisfied if PC1 and PC5, and PA1 and
PB1 are high.

The assembly language program for the above conditions is given below, which is

self explanatory:

Label Mnemonics Operand Comments

 LXI SP, XXXX H ;Initialize the stack pointer.
 MVI A, 80H ;Control word for 8255-I.
 OUT 03H ;Works all the ports of 8255-

I as output ports.
AGAIN MVI A, 01 H ;01 is loaded to accumulator.
 OUT 00 H ;PA0 is high (red LED of

north glows).
 OUT 01 H ;PB0 is high (red LED of

south glows).

 482

 MVI A, 44 H ;PC2 and PC6 are high
(green LEDs of east and
west glows).

 OUT 02 H
 CALL DELAY I ; Delay program of 60

seconds.
 MVI A, 22 H
 OUT 02 H ; PC1 and PC5 are high

(Yellow LEDs of east and
west glow).

 MVI A, 02 H
 OUT 00 H ; PA1 is high (yellow LED

of north glows).
 OUT 01 H ; PB1 is high (yellow LED

of south glows).
 CALL DELAY II ; Delay program of 20

seconds.
 MVI A, 11 H
 OUT 02 H ; PC0 and PC4 are high (red

LEDs of east and west
glow).

 MVI A, 04 H
 OUT 00 H ; PA2 is high (green LED of

north glows).
 OUT 01 H ; PB2 is high (green LED of

south glows).
 CALL DELAY I ; Delay program of 60

seconds.
 MVI A, 22 H
 OUT 02 H ; PC1 and PC5 are high

(Yellow LEDs of east and
west glow).

 MVI A, 02 H
 OUT 00 H ; PA1 is high (yellow LED

of north glows).
 OUT 01 H ; PB1 is high (yellow LED

of south glows).
 CALL DELAY II ; Delay program of 20

seconds.
 JMP AGAIN ; Jump to repeat the program

from the beginning.

 Subroutine programs to introduce delay for 6o seconds and 20 seconds are given
below:

 483

Subroutine Program for DELAY I

Label Mnemonics Operand Comments

DELAY I MVI B, 78 H ;78 H (120 decimal number)

is loaded to B register for
the loop.

YY LXI D, FA00 H
NXT1 DCX D ;Decrement D-E register

pair.
 MOV A, D ;Moves the contents stored

in MD-E to Acc.
 ORA E ;The contents of A and E

registers are ORed bit by
bit.

 JNZ NXT1 ;If the result is not
zero then jump to nxt1 else
next instruction.

 DCR B :Decrement B register
 JNZ YY
 RET ; Returns to main program.

Subroutine Program for DELAY II

Label Mnemonics Operand Comments

DELAY II MVI B, 28 H ;28 H (40 decimal number)

is loaded to B register for
the loop.

 JMP YY ; Jump to YY of DELAY I
program.

 Figure 15.10 shows the LED connections to 8255-I available with the
microprocessor kit.

 484

Fig. 15.10

15.5.1 Another Design of Microprocessor Based Traffic Light

 Here another design of Traffic light controller is given in which there are more
degree of freedom for the traffic. Further, the display of time delay (count down) on the
microprocessor kit is also shown. In this design, the divider lines at the four path ways
are shown (ref. figure 15.11). At each divider line of four path ways near the crossing,
five LEDs (one red, one yellow and three green) are installed on four pillars. These LEDs
are connected to the ports of PPI 8255-I available with the microprocessor kit. All the
ports of 8255 are used as output ports. The status of LEDs will indicate the direction of
the traffic at the crossing.

 In this design the delay of 90 seconds are allowed for the normal traffic and say
10 seconds delay is introduced for yellow light to clear the traffic, before the next traffic
direction. The delay will be displayed on the data field with down counting. The
assembly language programming of the design is given below. The program is simple and
self-explanatory.

 485

 Fig. 15.11

Main Program:

LOOK UP TABLE:

 2050 H 16 BLANK
 2051H 16 BLANK
 2052 H 16 BLANK
 2053 H 16 BLANK

Label Mnemonics Operand Comments

 LXI SP, XXXX H ;Initialize the stack pointer.
 MVI A, 80H ;Control word for 8255-I.
 OUT 03H ;Works all the ports of 8255-

I as output ports.
START MVI A, 21 H ; 21 H is loaded to

accumulator.

 486

 OUT 00 H ;PA0 and PA5 are high (red
LEDs of north and south
glow).

 MVI A, 0C H ; 0C H is loaded to
accumulator.

 OUT 01 H ; PB2 and PB3 are high
(green LEDs of East and
west glow).

 MVI A, 60 H ; 60 H is loaded to acc.
 OUT 02 H ; PC5 and PC6 are high

(Traffic from west to north
and east to south is
allowed).

 CALL DELAY I ; Calls the delay subroutine
program (DELAY I).

 CALL DISPLAY ; Calls the Display
subroutine program for the
display of delay time.

 MVI A, 21 H ;21 H is loaded to
accumulator.

 OUT 00 H ;PA0 and PA5 are high (red
LEDs of north and south
remain glow).

 MVI A, 12 H ; 12 H is loaded to
accumulator.

 OUT 01 H ; PB1 and PB4 are high
(yellow LEDs of East and
west glow).

 MVI A, 00 H ; 00 H is loaded to acc.
 OUT 02 H ; PC0 to PC7 are low.
 CALL DELAY II ; Calls the delay subroutine

program (DELAY II).
 CALL DISPLAY ; Calls the Display

subroutine program for the
display of delay time.

 MVI A, 21 H ; 21 H is loaded to
accumulator.

 OUT 00 H ;PA0 and PA5 are high (red
LEDs of north and south
glow).

 OUT 01 H ; PB0 and PB5 are high (red
LEDs of East and west
glow).

 MVI A, 96 H ; 96 H is loaded to acc.
 OUT 02 H ; PC1, PC2, PC4 and PC7

are high (Traffic from west

 487

to south and east to north is
allowed).

 CALL DELAY I ; Calls the delay subroutine
program (DELAY I).

 CALL DISPLAY ; Calls the Display
subroutine program for the
display of delay time.

 MVI A, 12 H ; 12 H is loaded to
accumulator.

 OUT 00 H ;PA1 and PA4 are high
(yellow LEDs of north and
south glow).

 OUT 01 H ; PB1 and PB4 are high
(yellow LEDs of East and
west glow).

 MVI A, 00 H ; 00 H is loaded to acc.
 OUT 02 H ; PC0 to PC7 are low.
 CALL DELAY II ; Calls the delay subroutine

program (DELAY II).
 CALL DISPLAY ; Calls the Display

subroutine program for the
display of delay time.

 MVI A, 0C H ; 0C H is loaded to
accumulator.

 OUT 00 H ;PA2 and PA3 are high
(green LEDs of north and
south glow).

 MVI A, 21 H ; 21 H is loaded to
accumulator.

 OUT 01 H ; PB0 and PB5 are high (red
LEDs of East and west
glow).

 MVI A, 09 H ; 09 H is loaded to acc.
 OUT 02 H ; PC0 and PC3 are high

(Traffic from north to east
and south to west is
allowed).

 CALL DELAY I ; Calls the delay subroutine
program (DELAY I).

 CALL DISPLAY ; Calls the Display
subroutine program for the
display of delay time.

 MVI A, 12 H ; 12 H is loaded to
accumulator.

 488

 OUT 00 H ;PA1 and PA4 are high
(yellow LEDs of north and
south glow).

 MVI B, 21 H ; 21 H is loaded to acc.
 OUT 01 H ; PB0 and PB5 are high (red

LEDs of East and west
glow).

 MVI A, 00 H ; 00 H is loaded to acc.
 OUT 02 H ; PC0 to PC7 are low.
 CALL DELAY II ; Calls the delay subroutine

program (DELAY II).
 CALL DISPLAY ; Calls the Display

subroutine program for the
display of delay time.

 MVI A, 21 H ; 21 H is loaded to
accumulator.

 OUT 00 H ;PA0 and PA5 are high (red
LEDs of north and south
glow).

 OUT 01 H ; PB0 and PB5 are high (red
LEDs of East and west
glow).

 MVI A, 96 H ; 99 H is loaded to acc.
 OUT 02 H ; PC1, PC2, PC4 and PC7

are high (Traffic from north
to west and south to east is
allowed).

 CALL DELAY I ; Calls the delay subroutine
program (DELAY I).

 CALL DISPLAY ; Calls the Display
subroutine program for the
display of delay time.

 MVI A, 12 H ; 12 H is loaded to
accumulator.

 OUT 00 H ;PA1 and PA4 are high
(yellow LEDs of north and
south glow).

 OUT 01 H ; PB1 and PB4 are high
(yellow LEDs of East and
west glow).

 MVI A, 00 H ; 00 H is loaded to acc.
 OUT 02 H ; PC0 to PC7 are low.
 CALL DELAY II ; Calls the delay subroutine

program (DELAY II).

 489

 CALL DISPLAY ; Calls the Display
subroutine program for the
display of delay time.

 JMP START ; Jump to START.

Subroutine Program for DELAY I:

Label Mnemonics Operand Comments

DELAY I MVI A, 09 H ; 09 H is loaded to
accumulator.

 STA 2054 ; Store it to memory
location 2054 H.

 MVI A, 00 H
 STA 2055 H ; for display of delay of 90

seconds for normal traffic.
 RET ; Returns to main program.

Subroutine Program for DELAY II:

Label Mnemonics Operand Comments

DELAY II MVI A, 01 H ; 01 H is loaded to
accumulator.

 STA 2054 ; Store it to memory
location 2054 H.

 MVI A, 00 H
 STA 2055 H ; for display of delay of 10

seconds for clearing the
traffic during yellow light
at the crossing.

 RET ; Returns to main program.

Subroutine Program for the display of Delay time (count down):

Label Mnemonics Operand Comments

DISPLAY CALL 0347 H ;Clears the display. It is the
program stored in ROM of
the kit.

AA XRA A ;Clears the accumulator
 MOV B, A ;Clears the B register also.
 LXI H, 2050 H ;Intialize H-L pair where the

current delay time is stored.

 490

 CALL 05D0 H ;Displays the current time in
address field. It is the
program stored in ROM of
the Kit. Here blank is
displayed in the address
field.

 MVI A, 01 H ;Stores 01 H in accumulator.
 MVI B, 00 H ;Stores 00 H in B register.
 LXI H, 2054 H ;Initialize H-L register pair

with 2054 H.
 CALL 05D0 H :Displays the current delay

time in data field (90
seconds or 10 seconds).

 LXI H, 2055 H ;Initialize H-L register pair
with 2055 H.

 MOV A, M ;Moves the least significant
digit (LSD) of seconds to
the accumulator.

 CPI 00 H ;Compares with 00 H.
 JNZ PROCEED ;If Acc.is not 00 H, then

jump to PROCEED.
 DCX H ;Decrement H-L register

pair.
 MOV A, M ;Moves MSD of the

seconds to accumulator.
 CPI 00 H ;Compaers it with 00.
 RZ ; Return if both are zero.
PROCEED MVI B, 02 H ; Program for delay of 1 sec

starts. It stores 02 H in
accumulator.

YY LXI D, FA00 H ;Intialize D-E register pair
with FA00H.

NXT DCX D ;Decrement D-E register
pair.

 MOV A, D ;Moves the contents stored
in MD-E to Acc.

 ORA E ;The contents of A and E
registers are ORed bit by
bit.

 JNZ NXT ;If the result is not zero then
jump to NXT else next
instruction.

 DCR B
 JNZ YY ; End of 1 sec delay.
 LXI H, 2055 H ;Initialize H-L register pair

with 2055 H.

 491

 MOV A, M ;Moves the least significant
digit (LSD) of seconds to
the accumulator.

 CPI 00 H ;Compares with 00 H.
 JZ BB ;If Acc.=00 H, then jump to

BB. Else goes to next
statement.

 SUI 01 H ; Subtract 01 from the acc.
 MOV M, A ; Store it to memory

location.
 JMP AA ; Jump to AA for the

display.
BB MVI A, 09 H ; Move 09 to Acc.
 MOV M, A ; It is stored in the memory

location.
 DCX H ; Decrement of H-L register

pair.
 MOV A, M ; Contents of this location is

moved to Acc.
 CPI 00 H ; Compared with 00.
 JNZ CC ; If not zero jump to CC.
 INX H
 MVI A, 00 H ; Get back 0 in the same

location.
 MOV M, A
 JMP AA ; Jump to AA for the

display.
CC SUI 01 H ; Subtract 01 from the

location.
 MOV M, A ; After subtraction store to

the memory location.
 JMP AA ; Jump to AA for the

display.
15.6 MICROPROCESSOR BASED STEPPER MOTOR CONTROL
 In this section the design of microprocessor based stepper motor control will be
discussed. The stepper motor has four windings such that the motor rotates in precise
steps from one fixed position to another. A stepper motor is an electromechanical device
which converts electrical pulses into discrete mechanical movements. The shaft or
spindle of a stepper motor rotates in discrete step increments when electrical command
pulses are applied to it in the proper sequence. The motor’s rotation has several direct
relationships to these applied input pulses. The sequence of the applied pulses is directly
related to the direction of motor shafts rotation. The speed of the motor shafts rotation is
directly related to the frequency of the input pulses and the length of rotation is directly
related to the number of input pulses applied. A stepper motor can be a good choice
whenever controlled movement is required. They can be used where the control rotation
angle, speed, position and synchronism are needed. Because of the inherent advantages

 492

stepper motors have found their place in many different applications. Some of these
include printers, plotters, high end office equipment, hard disk drives, medical
equipments, fax machines, automotive and many more.
 The stepper motor is to be interfaced with microprocessor by 8255A PPI and
some buffers/ amplifiers. The four windings (coils) of the stepper motor are shown in
figure 15.12. However, figure 15.13 shows the block diagram of the interfacing
connections for the stepper motor. One set of coils of the stepper motor is energized using
12 V d. c. supply in the form of pulse. After energizing one set of coil windings some
time delay is provided through software, then the supply is given to other set of windings.
The speed of the motor will be governed by the delay introduced in the system.

Fig. 15.12

Fig. 15.13

 For the clockwise movement of the stepper motor, it is energized in the sequence:
 A1 A2, A2 B1, B1 B2, B2 A1 and then repeats.
 Similarly, in the anti-clock wise movement of the stepper motor, it is energized in
the sequence:
 A1 A2, B2 A1, B1 B2, A2 B1 and then repeats.
 Number of steps or movements, for the stepper motor to be moved, are loaded in
the register C. For example the stepper motor to be moved for 20 steps then it equivalent
hexadecimal number 14 H is to be loaded this register before the start of the run.
Similarly, if the stepper motor is to be rotated in clock wise direction then load 00 in

 493

register B or load 01 in register B if the motor is to be moved in anti-clock wise direction.
The flow chart for the movement of the stepper motor is shown in figure 15.14.

Fig. 15. 14

 494

 Further, the bits (PA0, PA1, PA2 and PA3) of port A of 8255A are to be connected
to A1, A2, B1 and B2 coils of the motor respectively. The movements of the motor in
clockwise or anti-clock wise direction should be as:

 This is possible if CC H is loaded to the D-register and then data is rotated
clockwise or anti-clock wise direction with RRC or RLC instructions as shown below:

 The assembly language program for the above description is given below which is
self explanatory:

Label Mnemonics Operand Comments

 LXI SP, XXXX H ;Initialize the stack pointer.
 MVI A, 80H ;Control word for 8255-I.
 OUT 03H ;Works all the ports of 8255-

I as output ports.
 MVI C, 14 H ;14 H (20 steps for

movement) is loaded to C-
register. It is used as
counter.

 MVI B, YY H ; YY may be 00 H or 01 H
for clockwise or anti-clock
wise direction respectively.

 MOV A, B ; Move the contents of B-
register to accumulator.

 495

 CPI 01 H ; Check if movement is
clockwise or anti-clock
wise.

 JNZ CLKWISE ;If condition is satisfied then
clockwise direction else
anti-clock wise.

 MVI D, CC H ; Move CC H to D-register.
LOOP1 MOV A, D ; This data is moved to

accumulator.
 OUT 00 H ; Data is sent to coils of the

motor through Port A of
8255A.

 RLC ; Data is rotated left for anti-
clock wise movement of
the motor.

 MOV D, A ; After rotation data is stored
in D register.

 PUSH PSW ; Push Acc content and flag
content to Stack.

 PUSH D ; Push content of D-E
register pair to Stack.

 PUSH B : Push content of B-C
register pair to Stack.

 CALL DELAY ; Call subroutine program
for delay as per the
requirement.

 POP B ; Get back the content of B-
C register pair from the
Stack.

 POP D ; Get back the content of D-
E register pair from the
Stack.

 POP PSW ; Get back the Acc and flag
content from the Stack.

 DCR C ; Decrement in number of
counts.

 JNZ LOOP1 ; If counts are not 0 then
jump to LOOP1 for next
movement, else stop
processing.

 HLT
CLKWISE MVI D, CC H ; Move CC H to D-register.
LOOP2 MOV A, D ; This data is moved to

accumulator.

 496

 OUT 00 H ; Data is sent to coils of the
motor through Port A of
8255A.

 RRC ; Data is rotated right for
clock wise movement of
the motor.

 MOV D, A ; After rotation data is stored
in D register.

 PUSH PSW ; Push Acc content and flag
content to Stack.

 PUSH D ; Push content of D-E
register pair to Stack.

 PUSH B : Push content of B-C
register pair to Stack.

 CALL DELAY ; Call subroutine program
for delay as per the
requirement.

 POP B ; Get back the content of B-
C register pair from the
Stack.

 POP D ; Get back the content of D-
E register pair from the
Stack.

 POP PSW ; Get back the Acc and flag
content from the Stack.

 DCR C ; Decrement in number of
counts.

 JNZ LOOP2 ; If counts are not 0 then
jump to LOOP2 for next
movement.

 HLT ; stop processing.

 Subroutine programs to introduce delay for required time may be written as
discussed earlier.

15.7 MICROPROCESSOR BASED WASHING MACHINE CONTROL LER
 The automatic washing machines available in the market are microprocessor
based. Here conditional sequences are considered which are controlled by microprocessor
along with interfacing devices. It basically involves trigger inputs as well as specific
delays. In other words there are some trigger inputs which leads the washing machine to
work with certain time delays as well.
 The port A and Port B of 8255-I are used for the purpose of control of certain
functions of washing machine. Let the bits D0 and D1 of port A are used for introducing
time delay for certain time as given below:

 D1 D0

 497

 0 0 No time delay required.
 0 1 Delay 1 for certain time delay (say for t1)
 1 0 Delay 2 for certain other time delay (say for

t2 seconds)
 1 1 Not used
 D2 bit of the Port A is used for the tub motor rotating at the drying speed.
 D3 bit of the port A is used for water outlet.
 D4 bit of this port is used for the tub motor rotating at wash or rinse speed.
 D5 bit of this port is used for water inlet.
 D6 and D7 bits are not used.

 The devices connected to the Port A of 8255-I for the purpose of controlling
events during the operation of washing machine are as given in figure 15. 15

Fig. 15.15

 Consider a water level sensor connected with a D1 bit of port B of 8255-I. The
port B is used as the input port which will indicate if the water is filled to the specified
level.
 The sequence of events to be undertaken during the operation of washing machine
is as given below:

1. The tub is filled with water up to the specified level with the water inlet. The

level of the water will be sensed by the water level sensor.

2. The tub is rotated at wash or rinse speed for a fixed time t1.

3. The tub is allowed to empty for a fixed time t2.

4. The tub is filled again with water up to a specified level whose level will be

sensed with water level sensor.

5. The tub is rotated again with wash or rinse speed for the fixed time t1.

 498

6. The tub is allowed to empty again for a fixed time t2.

7. Switch on dryer for time t1.

Figure 15.16 shows the flow chart for the sequence of events to be carried out
during the washing machine operation.

The assembly language program for the above mentioned sequence of events is

given below:

Label Mnemonics Operand Comments

 LXI SP, XXXX H ;Initialize the stack pointer.
 MVI A, 82 H ;Control word for 8255-I.
 OUT 03 H ;Works port A of 8255-I as

output ports and port B as
input port.

 LXI H, 2500 H ; Initialize H-L register pair
which indicate address of
the look-up table.

NEXT 1 MOV A, M ; Get the data from the
address of the look-up
table.

 OUT 00 H ; The accumulator contents
go the port A of 8255-I.

 ANI 03 H ; Check if delay required.
 JZ NEXT ; If the delay is not required

jump to NEXT.
 ANI 02 H ; Check if delay-II is

required.
 JZ SB ; If yes jump to SB.
 CALL DELAY I ; Call delay program of t1

seconds.
 JMP PT1 ; Jump to PT1.
SB CALL DELAY II ; Call delay program of t2.
 JMP PT1 ; Jump to PT1.
NEXT INX H ; Get the address of next

data from the look-up table.
LOOP IN 01 H ; Get the input from the

water level sensor.
 SUB M ; Check if the water level is

equal to the required level.
 JNZ LOOP ; If no jump to LOOP.
PT1 INX H ; Get the address of next

data from the look-up table.
 MOV A, M ; Data is moved to Acc.
 CPI 00 H ; Data is compared with 00.

 499

 JNZ NEXT 1 ; If not zero jump to
NEXT1.

 HLT ; Else Halt.

Subroutine program for DELAY I :

Label Mnemonics Operand Comments

DELAY I LXI D, FFFF H
LOOP 1 DCX D ;Decrement D-E register

pair.

 MOV A, D ;Moves the contents stored

in MD-E to Acc.
 ORA E ;The contents of A and E

registers are ORed bit by
bit.

 JNZ LOOP 1 ;If the result is not zero then
jump to DELAY else next
instruction.

 RET ;Return to main program.

 500

Fig. 15.16

 501

Subroutine program for DELAY II

Label Mnemonics Operand Comments

DELAY II LXI D, DEEE H
LOOP 2 DCX D ; Decrement D-E register

pair.

 MOV A, D ; Moves the contents stored

in MD-E to Acc.
 ORA E ; The contents of A and E

registers are ORed bit by
bit.

 JNZ LOOP 2 ; If the result is not zero then
jump to DELAY else next
instruction.

 RET ; Return to main program.

15.8 MICROPROCESSOR BASED WATER LEVEL CONTROLLER

 Water level controller means water is to be pump out from the underground water
tank to the anther water tank situated on the top of the building for the distribution of
water to the other parts of the building. When the upper tank is empty or the level goes
below to a certain level, the pump should be automatically switched on. Further, if the
tank gets filled up to a certain level (top level) the pump should be switched off. The
level of the water inside the upper water tank should be displayed on the seven segment
units connected separately with the microprocessor kit. For this the tank to be filled is
divided in to 8 equal regions which are say 10 cm apart. So at every 10 cm, a metallic
probe is situated.
 The arrangement of 8 probes which are to be immersed in the water tank is shown
in figure 15.17. For the controller 8 metallic probes connected to +5 V d.c. supply
through resistance are immersed in the upper tank. The difference in heights between the
probes is equal to 10 cm (say). Besides the probe, another metallic strip is also immersed
in the tank, which is grounded. The eight probes are also connected to the inputs of 8
inverters as shown in figure 15.18. The outputs of the inverters are connected to 8 bits of
port A of 8255-I, which is used as input port. When any of the probes is immersed in the
water (or water level is below the probe), the output of the corresponding inverter will
provide a logic 0 to its bit of port A. However, if the water level touches the probe or
above the probe, then it provides logic 1 to the corresponding bit of port A. The status of
water level in the upper tank can directly be read by the microprocessor through the input
statement. For example, if only one probe is immersed in the water, then port A of 8255-I
will read it 01, similarly for the others. Table 15.4 shows the data to be read out by 8255-
I, when different probes are immersed in the water.
 When the water level of the tank is below 10 cm, the pump is automatically
switched on; however, when its level reaches to 80 cm, the pump will be switched off.

 502

 Figure 15.19 shows the connection to the two segment display units connected to
the port B of 8255-I for displaying the level of water in the upper tank in centimeters i.e.
if the water level is between 1 and 2 probe, then the display unit will display 10, similarly
for the other levels (ref. table 15.4).

Table 15.4
Sr.No. Probe number/ numbers

immersed in water
Data to be read out by the
microprocessor

Level in cms.

in Binary in Hexadecimal
1.
2.
3.
4.
5.
6.
7.
8.

1
1 and 2
1 to 3
1 to 4
1 to 5
1 to 6
1 to 7
1 to 8

0000 0001
0000 0011
0000 0111
0000 1111
0001 1111
0011 1111
0111 1111
1111 1111

01 H
03 H
07 H
0F H
1F H
3F H
7F H
FF H

10
20
30
40
50
60
70
80

Fig. 15.17

 503

Fig. 15.18

 504

Fig. 15.19

The assembly language program for the design of water level controller with the
above mentioned conditions is given below, which is self explanatory.

Label Mnemonics Operand Comments

 LXI SP, XXXX H ;Initialize the stack pointer.
 MVI A, 90H ;Control word for 8255-I.
 OUT 03H ;Works port A of 8255-I as

input port and other ports
as output ports.

START IN 00 H ; Read the water level
through input port A.

 LXI H, 25FF H ; Intilise the H-L register
pair (starting address of the
look up table).

 MOV C, M ; Data is moved to C-register
which is used as counter.

AGAIN INX H ; Increment the H-L register
pair.

 CMP M ; Compare the two levels.
 JZ PT1 ; If two levels are equal,

then jump to PT1.
 DCR C ; Decrement the counts.

 505

 JNZ AGAIN ; If counts are not zero then
jump to AGAIN.

PT1 INR H ; Increment the content of
H-register.

 MOV A, M ; Get the water level in
Accumulator.

 OUT 01 H ; Move it to Port B of 8255-I
for the display.

 CPI 10 H ; Compare this data with 10
cm.

 JNC NXT ; If the water is more than 10
cm, then move it to NXT.

 PUSH PSW ; Else save the Acc contents
in the stack.

 MVI A, 01 H ; 01 H is loaded to the
accumulator.

 OUT 02 H ; PC0 is high (Switch on the
motor for lifting the water).

 POP PSW ; Get back the accumulator
contents from the stack.

NXT CPI 80 H ; Compared the data with 80
cm.

 JC START ; If the data is less than 60,
then jump to START.

 MVI A, 00 H ; 00 H is loaded to the
accumulator.

 OUT 02 H ; PC0 is low (Switch off the
motor).

 CALL DELAY ; Calls delay program.
 JMP START ; Jump to start.

Delay Program may be written as discussed in earlier program as per the requirement.

LOOK UP TABLE

25FF H 09 H (Counts)
2600 H 00 H
2601 H 01 H
2602 H 03 H
2603 H 07 H
2604 H 0F H
2605 H 1F H
2606 H 3F H
2607 H 7F H
2608 H FF H

 506

Water level in Cms.

2700 H 00 H (00 Cm.)
2701 H 10 H (10 Cm.)
2702 H 20 H (20 Cm.)
2703 H 30 H (30 Cm.)
2704 H 40 H (40 Cm.)
2705 H 50 H (50 Cm.)
2706 H 60 H (60 Cm.)
2707 H 70 H (70 Cm.)
2708 H 80 H (80 Cm.)

15.9 MICROPROCESSOR BASED TEMPERATURE CONTROLLER

 In this section a very simple design of temperature controller is being discussed.
The temperature of water bath or of any other device is to be controlled or maintained
constant. This is possible if the a.c. mains supplied to the device is switched off if the
temperature of the device is more than the required temperature; and it is switched on if
the temperature is less than the required temperature. A temperature sensor may be used
to sense the temperature of the device. The sensor (say a thermocouple) may provide the
thermo e.m.f. (d.c. signal) corresponding to the temperature. The d.c. signal may be
converted to the digital signal with the help of A/D converter IC 0809. The output of the
A/D converter can be read by the microprocessor through the 8255 PPI.

 The arrangement for the control is shown in figure 15.20. Channel 0 of A/D
converter is used to convert the sensor voltage to equivalent digital signal. This digital
signal can be read out by the microprocessor 8085A through port A (used as input port)
of 8255-I provided on the microprocessor kit. Port CLower of 8255 is used as output port to
send the SOC (Start of Conversion) signal and other bits for the channel selection of A/D
converter 0809. For the selection of channel 0 ALE (Address Latch Enable) and SOC are
made high by the output port CLower of 8255. Port CUpper of 8255 is uses as output port.
Before reading the input data (digital value) by the microprocessor, EOC (End of
Conversion) signal PC7 is checked for logic 1.The bit PB0 of port B (used as output port)
of 8255 may be used to control the heating arrangement of the device through the relay
system.

 Before running the assembly language program, it is to be calibrated as per the
sensor used in this arrangement. Note down the temperature and digital value (in
Hexadecimal) which may be stored in some memory locations as a look-up table. This
look-up table may be used for the display of the temperature on the address/data field of
the microprocessor kit using its monitor program. The digital data of the temperature of
the device to be maintained constant, may be saved in a memory location say 2500 H. By
comparing the current data (of temperature) with the saved (or required) data, the
electrical heating system may be switched on/off.

 Figure 15.21 shows the flow chart for the controller.

 507

Fig. 15.20

PROGRAM
Label Mnemonics operand Comments

MVI A, 98 H ; Initialize 8255-I to work Port A
and Port CUpper as input ports, and
port CLower as output port.

 OUT 03 H ; Write the control word in the
control word register of 8255-I.

 LXI H, 2500 H ; Initialize H-L register pair for
address where required temp. T is
saved.

 508

 Fig. 15.21

 START MVI A, 00 H ; Load accumulator with 00H.
 OUT 02 H ; 00H is sent to Port CLower to select

channel 0.
 MVI A, 08 H ; Load 08 H to accumulator.
 OUT 02 H ; ALE and SOC are enabled (high).
 MVI A, 00 H ; Load 00 H to accumulator.
 OUT 02 H ; ALE and SOC will be low. A

pulse is applied from high to low
for the conversion through PC3
without affecting the channel
selected.

READ IN 02 H ; Read End of conversion (PC7).
 RAL ; Rotate left to check if PC7 is one.
 JNC READ ; If not 1 READ again.
 IN 00 H ; Read digital output of the A/D

converter (Temp. t).

 509

 STA 2501 H ; Store the result in 2501 H memory
location.

 CMP M ; Compare the two temperatures for
equality.

 JNZ NEXT ; If not equal then jump to NEXT.
LOOP1 MVI A, 00 H ; Switch off the heater.
 OUT 01 H ; PB0 is low.
 JMP START ; Jump to START.
NEXT SUB M ; Check if t>T ?
 JNC LOOP1 ; If yes then jump to LOOP1.
 MVI A, 01 H ; Switch on the heater.
 OUT 01 H ; PB0 is high.
 JMP START ; Jump to START.

PROBLEMS

1. How will you design the digital clock on the microprocessor kit? Hours and

minutes should be displayed on the address field and seconds should be displayed
on the data field. Monitor programs of the kit may be used for the display of time.
Write program in assembly language of 8085.

2. Design the digital clock which can display the time in 24 hours form on the
microprocessor kit. Write program in assembly language of 8085.

3. In problem 1, on time should also be introduced. Write program in assembly
language of 8085.

4. Discuss the design of microprocessor based LED dial clock. Write program in
assembly language of 8085.

5. Discuss the design of microprocessor based running light in which some LEDs
can run in a sequence. Write program in assembly language of 8085.

6. Discuss the design of microprocessor based school bell system. Write program in
assembly language of 8085.

7. Discuss the design of microprocessor based Traffic light (simple arrangement).
Write program in assembly language of 8085.

8. Discuss the design of microprocessor based Traffic light (complicated
arrangement) in which traffic is allowed in left-right direction also. Write program
in assembly language of 8085.

9. In the above design of microprocessor based traffic light, the delay time should
also be displayed on the address and data field of the microprocessor kit. Write
program in assembly language of 8085.

10. Discuss the design of microprocessor based Stepper Motor controller. Write
program in assembly language of 8085.

11. Write program in assembly language of 8085 to control the different function of
washing machine.

 510

12. Discuss the water level controller which can pump out the water from the
underground tank to the tank placed on the roof of the building. The motor of the
pump should be switched on if the water level in the upper tank is less than
certain level. The pump should be switched off when the water level in the upper
tank is completely filled. Program for same should be written in assembly
language of the 8085 microprocessor.

13. Discuss the design of microprocessor based Temperature controller which can
maintain the temperature of a device constant. Write program in assembly
language of 8085.

Appendix - I

 Instruction codes of 8085 Microprocessor in Alphabetical Order

Mne-
monics

Ope-
rand

Op
code

Bytes T-
States

Status
CY AC Z S P

Flags
Affected

ACI

Data

CE 2

7

x x x x x All

ADC A 8F

1 4 x x x x x All

ADC B 88 1 4 x x x x x All

ADC C 89 1 4 x x x x x All

ADC D 8A 1 4 x x x x x All

ADC E 8B 1 4 x x x x x All

ADC H 8C 1 4 x x x x x All

ADC L 8D 1 4 x x x x x All

ADC M 8E 1 7 x x x x x All

ADD A 87 1 4 x x x x x All

ADD B 80 1 4 x x x x x All

ADD C 81 1 4 x x x x x All

ADD D 82 1 4 x x x x x All

ADD E 83 1 4 x x x x x All

ADD H 84 1 4 x x x x x All

ADD L 85 1 4 x x x x x All

ADD M 86 1 7 x x x x x All

ADI Data C6 2 7 x x x x x All

 ii

Mne-
monics

Ope-
rand

Op
code

Bytes T-
States

Status
CY AC Z S P

Flags
affected

ANA A A7 1

4

0 1 x x x CY is 0
AC is 1

ANA B A0 1 4 0 1 x x x CY is 0
AC is 1

ANA C A1 1 4 0 1 x x x CY is 0
AC is 1

ANA D A2 1 4 0 1 x x x CY is 0
AC is 1

ANA E A3 1 4 0 1 x x x CY is 0
AC is 1

ANA H A4 1 4 0 1 x x x CY is 0
AC is 1

ANA L A5 1 4 0 1 x x x CY is 0
AC is 1

ANA M A6 1 7 0 1 x x x CY is 0
AC is 1

ANI Data E6 2 7 0 1 x x x CY is 0
AC is 1

CALL Label CD 3 18 – – – – – None

CC Label DC 3 18/9 – – – – – None

CM Label FC 3 18/9 – – – – – None

CMA 2F 1 4 – – – – – None

CMC 3F 1 4 x – – – – Only
CY

CMP A BF 1 4 x x x x x All

CMP B B8 1 4 x x x x x All

CMP C B9 1 4 x x x x x All

CMP D BA 1 4 x x x x x All

CMP E BB 1 4 x x x x x All

CMP H BC 1 4 x x x x x All

CMP L BD 1 4 x x x x x All

CMP M BE 1 7 x x x x x All

 iii

Mne-
monics

Ope-
rand

Op
code

Bytes T-
States

Status
CY AC Z S P

Flags
Affected

CNC Label D4 3 18/9 – – – – – None

CNZ Label C4 3 18/9 – – – – – None

CP Label F4 3 18/9 – – – – – None

CPE Label EC 3 18/9 – – – – – None

CPI Data FE 2 7 x x x x x All

CPO Label E4 3 18/9 – – – – – None

CZ Label CC 3 18/9 – – – – – None

DAA 27 1 4 x x x x x All

DAD B 09 1 10 x – – – – Only CY
flag

DAD D 19 1 10 x – – – – Only CY
flag

DAD H 29 1 10 x – – – – Only CY
flag

DAD SP 39 1 10 x – – – – Only CY
flag

DCR A 3D 1 4 – x x x x All Expt.
CY

DCR B 05 1 4 – x x x x All Expt.
CY

DCR C 0D 1 4 – x x x x All Expt.
CY

DCR D 15 1 4 – x x x x All Expt.
CY

DCR E 1D 1 4 – x x x x All Expt.
CY

DCR H 25 1 4 – x x x x All Expt.
CY

DCR L 2D 1 4 – x x x x All Expt.
CY

DCR M 35 1 10 – x x x x All Expt.
CY

DCX B 0B 1 6 – – – – – None

DCX D 1B 1 6 – – – – – None

 iv

Mne-
monics

Ope-
rand

Op
code

Bytes T-
States

Status
CY AC Z S P

Flags
affected

DCX H 2B 1 6 – – – – – None

DCX SP 3B 1 6 – – – – – None

DI F3 1 4 – – – – – None

EI FB 1 4 – – – – – None

HLT 76 1 5 – – – – – None

IN Port
Addr.

DB 2 10 – – – – – None

INR A 3C 1 4 – x x x x All Expt.
CY

INR B 04 1 4 – x x x x All Expt.
CY

INR C 0C 1 4 – x x x x All Expt.
CY

INR D 14 1 4 – x x x x All Expt.
CY

INR E 1C 1 4 – x x x x All Expt.
CY

INR H 24 1 4 – x x x x All Expt.
CY

INR L 2C 1 4 – x x x x All Expt.
CY

INR M 34 1 10 – x x x x All Expt.
CY

INX B 03 1 6 – – – – – None

INX D 13 1 6 – – – – – None

INX H 23 1 6 – – – – – None

INX SP 33 1 6 – – – – – None

JC Label DA 3 10/7 – – – – – None

JM Label FA 3 10/7 – – – – – None

JMP Label C3 3 10 – – – – – None

JNC Label D2 3 10/7 – – – – – None

 v

Mne-
monics

Ope-
rand

Op
code

Bytes T-
States

Status
CY AC Z S P

Flags
affected

JNZ Label C2 3 10/7 – – – – – None

JP Label F2 3 10/7 – – – – – None

JPE Label EA 3 10/7 – – – – – None

JPO Label E2 3 10/7 – – – – – None

JZ Label CA 3 10/7 – – – – – None

LDA Addr. 3A 3 13 – – – – – None

LDAX B 0A 1 7 – – – – – None

LDAX D 1A 1 7 – – – – – None

LHLD Addr. 2A 3 16 – – – – – None

LXI B 01 3 10 – – – – – None

LXI D 11 3 10 – – – – – None

LXI H 21 3 10 – – – – – None

LXI SP 31 3 10 – – – – – None

MOV A, A 7F 1 4 – – – – – None

MOV A, B 78 1 4 – – – – – None

MOV A, C 79 1 4 – – – – – None

MOV A, D 7A 1 4 – – – – – None

MOV A, E 7B 1 4 – – – – – None

MOV A, H 7C 1 4 – – – – – None

MOV A, L 7D 1 4 – – – – – None

MOV A, M 7E 1 7 – – – – – None

MOV B, A 47 1 4 – – – – – None

 vi

Mne-
monics

Ope-
rand

Op
code

Bytes T-
States

Status
CY AC Z S P

Flags
affected

MOV B, B 40 1 4 – – – – – None

MOV B, C 41 1 4 – – – – – None

MOV B, D 42 1 4 – – – – – None

MOV B, E 43 1 4 – – – – – None

MOV B, H 44 1 4 – – – – – None

MOV B, L 45 1 4 – – – – – None

MOV B, M 46 1 7 – – – – – None

MOV C, A 4F 1 4 – – – – – None

MOV C, B 48 1 4 – – – – – None

MOV C, C 49 1 4 – – – – – None

MOV C, D 4A 1 4 – – – – – None

MOV C, E 4B 1 4 – – – – – None

MOV C, H 4C 1 4 – – – – – None

MOV C, L 4D 1 4 – – – – – None

MOV C, M 4E 1 7 – – – – – None

MOV D, A 57 1 4 – – – – – None

MOV D, B 50 1 4 – – – – – None

MOV D, C 51 1 4 – – – – – None

MOV D, D 52 1 4 – – – – – None

MOV D, E 53 1 4 – – – – – None

MOV D, H 54 1 4 – – – – – None

MOV D, L 55 1 4 – – – – – None

 vii

Mne-
monics

Ope-
rand

Op
code

Bytes T-
States

Status
CY AC Z S P

Flags
affected

MOV D, M 56 1 7 – – – – – None

MOV E, A 5F 1 4 – – – – – None

MOV E, B 58 1 4 – – – – – None

MOV E, C 59 1 4 – – – – – None

MOV E, D 5A 1 4 – – – – – None

MOV E, E 5B 1 4 – – – – – None

MOV E, H 5C 1 7 – – – – – None

MOV E, L 5D 1 4 – – – – – None

MOV E, M 5E 1 7 – – – – – None

MOV H, A 67 1 4 – – – – – None

MOV H, B 60 1 4 – – – – – None

MOV H, C 61 1 4 – – – – – None

MOV H, D 62 1 4 – – – – – None

MOV H, E 63 1 4 – – – – – None

MOV H, H 64 1 4 – – – – – None

MOV H, L 65 1 4 – – – – – None

MOV H, M 66 1 7 – – – – – None

MOV L, A 6F 1 4 – – – – – None

MOV L, B 68 1 4 – – – – – None

MOV L, C 69 1 4 – – – – – None

MOV L, D 6A 1 4 – – – – – None

MOV L, E 6B 1 4 – – – – – None

 viii

Mne-
monics

Ope-
rand

Op
code

Bytes T-
States

Status
CY AC Z S P

Flags
affected

MOV L, H 6C 1 4 – – – – – None

MOV L, L 6D 1 4 – – – – – None

MOV L, M 6E 1 7 – – – – – None

MOV M, A 77 1 7 – – – – – None

MOV M, B 70 1 7 – – – – – None

MOV M, C 71 1 7 – – – – – None

MOV M, D 72 1 7 – – – – – None

MOV M, E 73 1 7 – – – – – None

MOV M, H 74 1 7 – – – – – None

MOV M, L 75 1 7 – – – – – None

MVI A, data 3E 2 7 – – – – – None

MVI B, data 06 2 7 – – – – – None

MVI C, data 0E 2 7 – – – – – None

MVI D, data 16 2 7 – – – – – None

MVI E, data 1E 2 7 – – – – – None

MVI H, data 26 2 7 – – – – – None

MVI L, data 2E 2 7 – – – – – None

MVI M, data 36 2 10 – – – – – None

NOP 00 1 4 – – – – – None

ORA A B7 1 4 0 0 x x x CY is 0
AC is 0

ORA B B0 1 4 0 0 x x x CY is 0
AC is 0

ORA C B1 1 4 0 0 x x x CY is 0
AC is 0

 ix

Mne-
monics

Ope-
rand

Op
code

Bytes T-
States

Status
CY AC Z S P

Flags
affected

ORA D B2 1 4 0 0 x x x CY is 0
AC is 0

ORA E B3 1 4 0 0 x x x CY is 0
AC is 0

ORA H B4 1 4 0 0 x x x CY is 0
AC is 0

ORA L B5 1 4 0 0 x x x CY is 0
AC is 0

ORA M B6 1 7 0 0 x x x CY is 0
AC is 0

ORI Data F6 2 7 0 0 x x x CY is 0
AC is 0

OUT Port
Addr.

D3 2 10 – – – – – None

PCHL E9 1 6 – – – – – None

POP B C1 1 10 – – – – – None

POP D D1 1 10 – – – – – None

POP H E1 1 10 – – – – – None

POP PSW F1 1 10 x x x x x All

PUSH B C5 1 12 – – – – – None

PUSH D D5 1 12 – – – – – None

PUSH H E5 1 12 – – – – – None

PUSH PSW F5 1 12 x x x x x All

RAL 17 1 4 x – – – – Only
CY

RAR 1F 1 4 x – – – – Only
CY

RC D8 1 12/6 – – – – – None

RET C9 1 10 – – – – – None

RIM 20 1 4 – – – – – None

RLC 07 1 4 x – – – – Only
CY

 x

Mne-
monics

Ope-
rand

Op
code

Bytes T-
States

Status
CY AC Z S P

Flags
affected

RM F8 1 12/6 – – – – – None

RNC D0 1 12/6 – – – – – None

RNZ C0 1 12/6 – – – – – None

RP F0 1 12/6 – – – – – None

RPE E8 1 12/6 – – – – – None

RPO E0 1 12/6 – – – – – None

RRC 0F 1 4 x – – – – Only
CY

RST 0 C7 1 12 – – – – – None

RST 1 CF 1 12 – – – – – None

RST 2 D7 1 12 – – – – – None

RST 3 DF 1 12 – – – – – None

RST 4 E7 1 12 – – – – – None

RST 5 EF 1 12 – – – – – None

RST 6 F7 1 12 – – – – – None

RST 7 FF 1 12 – – – – – None

RZ C8 1 12/6 – – – – – None

SBB A 9F 1 4 x x x x x All

SBB B 98 1 4 x x x x x All

SBB C 99 1 4 x x x x x All

SBB D 9A 1 4 x x x x x All

SBB E 9B 1 4 x x x x x All

SBB H 9C 1 4 x x x x x All

 xi

Mne-
monics

Ope-
rand

Op
code

Bytes T-
States

Status
CY AC Z S P

Flags
affected

SBB L 9D 1 4 x x x x x All

SBB M 9E 1 7 x x x x x All

SBI Data DE 2 7 x x x x x All

SHLD Addr. 22 3 16 – – – – – None

SIM 30 1 4 – – – – – None

SPHL F9 1 6 – – – – – None

STA Addr. 32 3 13 – – – – – None

STAX B 02 1 7 – – – – – None

STAX D 12 1 7 – – – – – None

STC 37 1 4 x – – – – Only
CY

SUB A 97 1 4 x x x x x All

SUB B 90 1 4 x x x x x All

SUB C 91 1 4 x x x x x All

SUB D 92 1 4 x x x x x All

SUB E 93 1 4 x x x x x All

SUB H 94 1 4 x x x x x All

SUB L 95 1 4 x x x x x All

SUB M 96 1 7 x x x x x All

SUI Data D6 2 7 x x x x x All

XCHG EB 1 4 – – – – – None

XRA A AF 1 4 0 0 x x x CY &
AC Zero

XRA B A8 1 4 0 0 x x x CY &
AC Zero

 xii

Mne-
monics

Ope-
rand

Op
code

Bytes T-
States

Status
CY AC Z S P

Flags
affected

XRA C A9 1 4 0 0 x x x CY &
AC Zero

XRA D AA 1 4 0 0 x x x CY &
AC Zero

XRA E AB 1 4 0 0 x x x CY &
AC Zero

XRA H AC 1 4 0 0 x x x CY &
AC Zero

XRA L AD 1 4 0 0 x x x CY &
AC Zero

XRA M AE 1 7 0 0 x x x CY &
AC Zero

XRI Data EE 2 7 0 0 x x x CY &
AC Zero

XTHL E3 1 16 – – – – – None

 xiii

Appendix - II

 Instruction codes of 8085 Microprocessor in Hexadecimal Order

Hex Code Mnemonics Hex Code Mnemonics
00 NOP 27 DAA
01 LXI B 28 ---
02 STAX B 29 DAD H
03 INX B 2A LHLD
04 INR B 2B DCX H
05 DCR B 2C INR L
06 MVI B 2D DCR L
07 RLC 2E MVI L
08 --- 2F CMA
09 DAD B 30 SIM
0A LDAX B 31 LXI SP
0B DCX B 32 STA
0C INR C 33 INX SP
0D DCR C 34 INR M
0E MVI C 35 DCR M
0F RRC 36 MVI M
10 --- 37 STC
11 LXI D 38 ---
12 STAX D 39 DAD SP
13 INX D 3A LDA
14 INR D 3B DCX SP
15 DCR D 3C INR A
16 MVI D 3D DCR A
17 RAL 3E MVI A
18 --- 3F CMC
19 DAD D 40 MOV B, B
1A LDAX D 41 MOV B, C
1B DCX D 42 MOV B, D
1C INR E 43 MOV B, E
1D DCR E 44 MOV B, H
1E MVI E 45 MOV B, L
1F RAR 46 MOV B, M
20 RIM 47 MOV B, A
21 LXI H 48 MOV C, B
22 SHLD 49 MOV C, C
23 INX H 4A MOV C, D
24 INR H 4B MOV C, E
25 DCR H 4C MOV C, H

 xiv

26 MVI H 4D MOV C, L

Hex Code Mnemonics Hex Code Mnemonics
4E MOV C, M 75 MOV M, L
4F MOV C, A 76 HLT
50 MOV D, B 77 MOV M, A
51 MOV D, C 78 MOV A, B
52 MOV D, D 79 MOV A, C
53 MOV D, E 7A MOV A, D
54 MOV D, H 7B MOV A, E
55 MOV D, L 7C MOV A, H
56 MOV D, M 7D MOV A, L
57 MOV D, A 7E MOV A, M
58 MOV E, B 7F MOV A, A
59 MOV E, C 80 ADD B
5A MOV E, D 81 ADD C
5B MOV E, E 82 ADD D
5C MOV E, H 83 ADD E
5D MOV E, L 84 ADD H
5E MOV E, M 85 ADD L
5F MOV E, A 86 ADD M
60 MOV H, B 87 ADD A
61 MOV H, C 88 ADC B
62 MOV H, D 89 ADC C
63 MOV H, E 8A ADC D
64 MOV H, H 8B ADC E
65 MOV H, L 8C ADC H
66 MOV H, M 8D ADC L
67 MOV H, A 8E ADC M
68 MOV L, B 8F ADC A
69 MOV L, C 90 SUB B
6A MOV L, D 91 SUB C
6B MOV L, E 92 SUB D
6C MOV L, H 93 SUB E
6D MOV L, L 94 SUB H
6E MOV L, M 95 SUB L
6F MOV L, A 96 SUB M
70 MOV M, B 97 SUB A
71 MOV M, C 98 SBB B
72 MOV M, D 99 SBB C
73 MOV M, E 9A SBB D
74 MOV M, H 9B SBB E

 xv

Hex Code Mnemonics Hex Code Mnemonics
9C SBB H C3 JMP
9D SBB L C4 CNZ
9E SBB M C5 PUSH B
9F SBB A C6 ADI
A0 ANA B C7 RST 0
A1 ANA C C8 RZ
A2 ANA D C9 RET
A3 ADA E CA JZ
A4 ANA H CB ---
A5 ANA L CC CZ
A6 ANA M CD CALL
A7 ANA A CE ACI
A8 XRA B CF RST 1
A9 XRA C D0 RNC
AA XRA D D1 POP D
AB XRA E D2 JNC
AC XRA H D3 OUT
AD XRA L D4 CNC
AE XRA M D5 PUSH D
AF XRA A D6 SUI
B0 ORA B D7 RST 2
B1 ORA C D8 RC
B2 ORA D D9 ---
B3 ORA E DA JC
B4 ORA H DB IN
B5 ORA L DC CC
B6 ORA M DD ---
B7 ORA A DE SBI
B8 CMP B DF RST 3
B9 CMP C E0 RPO
BA CMP D E1 POP H
BB CMP E E2 JPO
BC CMP H E3 XTHL
BD CMP L E4 CPO
BE CMP M E5 PUSH H
BF CMP A E6 ANI
C0 RNZ E7 RST 4
C1 POP B E8 RPE
C2 JNZ E9 PCHL

 xvi

Hex Code Mnemonics Hex Code Mnemonics
EA JPE F5 PUSH PSW
EB XCHG F6 ORI
EC CPE F7 RST 6
ED --- F8 RM
EE XRI F9 SPHL
EF RST 5 FA JM
F0 RP FB EI
F1 POP PSW FC CM
F2 JP FD ---
F3 DI FE CPI
F4 CP FF RST 7

Total: 246 Instructions

 xvii

View publication statsView publication stats

https://www.researchgate.net/publication/264005162

