
Darbohanga College

Highway Construction and Materials

Aditya Kumar

Types of pavements

Difference between flexible and rigid pavement

Flexible pavement

- Load is transfer by grain to grain.
- Low strength.
- Low life Span.
- > High maintenance cost.
- Rolling of surface is needed.
- Damaged by oils and certain chemicals.

Rigid Pavement

- Load transfer is not exists.
- High strength.
- Life span is more.
- Low Maintenance cost.
- Rolling of surface is not needed.
- > No damage by oils and greases.

EMBANKMENT

Functions of embankments

- To keep the subgrade adequately above the HFL or ground water level
- To prevent damage to pavement due to surface water from adjoining land
- To reduce the possible damage to pavement layers due to capillary water
- To maintain the vertical alignment

EMBANKMENT

<u>Design elements</u>

- Height
- Fill material
- Settlement
- Stability of foundation and
- Stability of slopes

<u>Site clearance</u>

- Clearing
- Grubbing
- Stripping

Equipment's

Materials

- Soil
- Morrum
- Gravel
- Flyash
- Local available materials

<u>Tests</u>

- Sieve Analysis
- Consistency limits
- MDD & OMC
- Deleterious constituents
- Shear strength
- Consolidation
- CBR

<u>Unsuitable Material</u>

- Materials from swamps, marshes and bogs
- Peat, log, slump and perishable material

OL, OI, OH or Peat

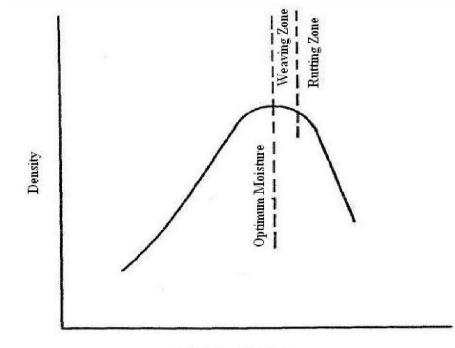
- Materials in a frozen condition
- •Clay having LL > 70 and PI > 45
- •Material with salts
- •Size of coarse material > 75 mm

Compaction Requirements

• Not less than 95 percent relative to MDD

Density Requirements

SI. No	Type of work	For NH/SH/MDR	For Rural Roads
1	Embankment upto 3 m height, not subjected to extensive flooding	Not less than 15.2 kN/m ³	Not less than 14.4 kN/m ³
2	Embankment of any height subject to long period of inundation	Not less than 16.0 kN/m ³	Not less than 15.2 kN/m ³


- Additional vegetation removal
 - To provide adequate sight distance
 - To improve the landscape
 - To remove decayed or dead trees
 - To remove obstructions to drainage
 - To permit access to and use of borrow pits
- Preliminary operations
 - Clearing
 - Salvage
 - Waste disposal
 - Stripping of top soil
 - Compaction of original ground
 - Embankment height

<u>Placing of fill material</u>

- Successive layers
- Not more than 250 mm
- Foot length + 50 mm (sheepsfoot roller)
- Required moisture content
- Adjustment in borrow area
- Adjustment while construction
- Water sprinklers, graders, barrows and mixers
- Drying
- -2 OMC +1

Compaction

- Increase in strength
- Reduce compressibility
- Reduction in moisture variation
- Reduction in erodability

Sheep foot roller

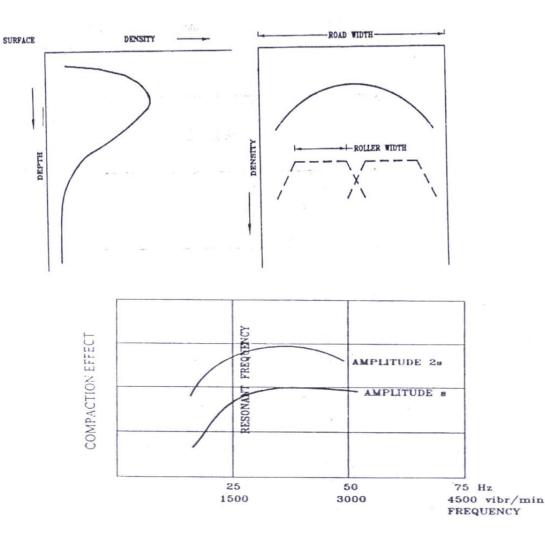
- As the name indicates, this type of roller consists of a drum having many round or rectangular shaped protrusions or "feet" on it. These rollers are also called tamping rollers.
- The thickness of compacting layer is kept about 5 cm more than the length of each foot.

Pneumatic tyre roller

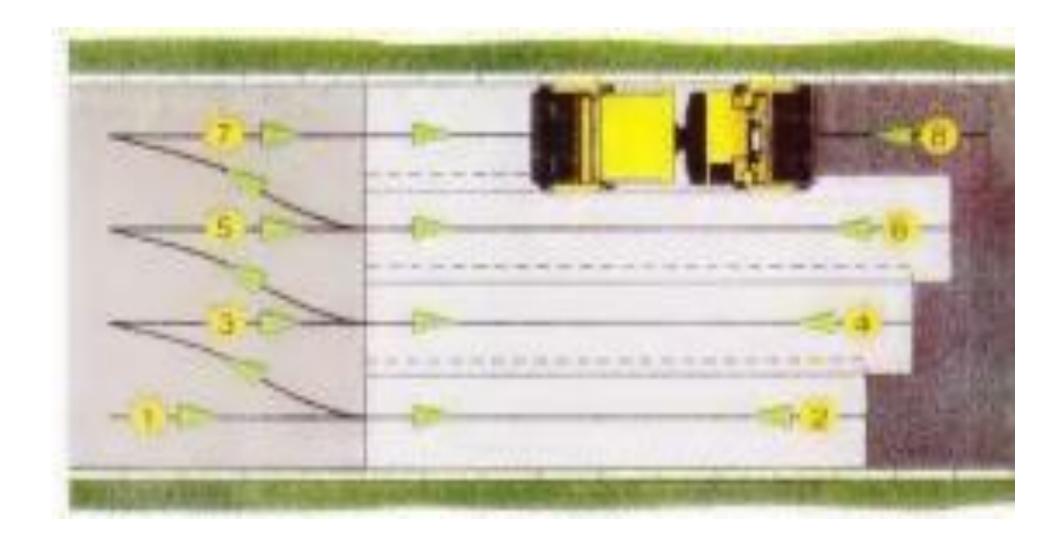
- This type of roller consists of a heavily loaded wagon with several rows of four to six closely spaced tyres. This is also called rubber tyre roller.
- It provided uniform pressure throughout the width.
- 2 factors governing the amount of compaction are as follow
 - Tyre pressure
 - Area of contact
- Tyre pressure may be upto about **7 kg/cm**
- The gross weight of the roller is about 6 to 10 tonnes which can be increased to 25 tonnes by ballasting with steel section or other means.
- The maximum density can be achieved by 8 passes of the roller. The optimum speed of roller is between 6 to 24 km/h

VIBRATORY ROLLERS

- This type of roller is fitted with one or two smooth surfaced steel wheels 0.9 m to 1.5 m in diameter and 1.2 m to 1.8 m wide.
- Self propelled vibratory rollers are now available weighing from **4 to 6 tonnes**.
- Vibrations are generated by the rotation of an eccentric shaft inside.
- A vibratory roller is used for compacting granular base courses. It is sometimes used for asphaltic concrete work.


SMOOTH WHEELED ROLLER

- This type of roller consists of a large steel drum in front and one or two wheels or drum on the rear end.
- Depending upon the number of wheels on the rear, it can be of following two types:
- Tandem rollers (having one wheel at rear and one wheel in front)
- Three wheeled rollers (having two wheel at rear and one in front)
- The weight of tandem roller varies from 2 to 8 tonnes and that of two wheeled roller varies from 8 to 10 tonnes.
- The ground pressure exerted by tandem rollers is about 10 to 17 kg/cm²
- The optimum working speed has found to be 3 to 6 km/h and about 8 passes are adequate for compacting 20 cm layer.



Factors affecting field compaction

- Compactive effort
- MOISTURE CONTROL
- Soil type
- Thickness of lift
- Smooth Wheel Rollers
- 8 10 tonnes; 20 tonnes
- Vibratory Rollers
- Rolling speed 3 to 6 kmph
- Frequency 25 to 30 Hz
- Amplitude 1.5 to 2 mm (soil)

<u>Rolling Pattern</u>

Materials/Borrow pit

- From cutting for nearby sections of the road
- From excavation for improving sight distances
- By sectioning an adjacent waterway where necessary
- By excavating cuts to lead drainage water away from the road
- By excavating side drains and catch water drains
- From wasteland outside the roadland
- From humps above the general ground level within the roadland
- By excavating tanks
- From the land acquired temporarily outside the roadland
- From soil mounds resulting from the digging of wells

Borrow pit

- Should be rectangular in shape and parallel to road alignment
- Should be minimum 5 m away from toe
- Depth of cutting should check the imaginary line
- Should not be dug continuously
- Provide adequate drainage
- From cultivated land, top soil should be preserved
- Should not be dug within 800 m of town and village limits
- Preferably depth of digging shall be 30 cm
- Borrow pits on river side
- Borrow pits on landside

<u>Filter Material</u>

Sieve Designation	Class I	Class II	Class III
53 mm	¥)	18. 4	100
45 mm			97-100
26.5 mm		100	
22.4 mm	41	95-100	50-100
11.2 mm	100	48-100	20-60
5.6 mm	92-100	28-54	4-32
2.8 mm	83-100	20-35	0-10
1.4 mm	59-96	•	0-5
710 micron	35-80	6-18	
355 micron	14-40	2-9	-
180 micron	3-15		
90 micron	0-5	0-4	0-3

<u>Embankment</u>

<u>Embankment</u>

<u>Embankment</u>

Construction procedure of embankment

- Site clearance
- Dozer, excavator, grader, et.,
- Preserving top soil (if required)
- Identification and selection of material
- Dewatering
- Setting up construction limits
- Determining the compaction pattern (control section)
- Placing the Material
 - Fill to required thickness
 - Drainage requirements
- Moisture check
- Spreading
 - Grader
- Compaction
 - Rollers and plate vibrators
- Density check
- Acceptance
- Subsequent lift placement

Unsuitable Materials

• Fly ash

- Produced from coal based thermal power plants
- 90 million tonnes
- Utilization 13%
- Types
- Bottom ash
- Pond ash

<u>Fly ash</u>

- Bulk utilization in embankments
- Environmental protection
- Alternate to borrow soil
- Properties
 - Type of coal
 - Pulverization
 - Combustion techniques
 - Disposal systems

Typical Properties of Fly ash (Pond ash)

Parameter	Range			
Specific Gravity	1.90 -2.55			
Plasticity	Non-Plastic			
Maximum Dry Density (gm/cc)	0.9 -1.6			
Optimum Moisture Content (%)	38.0 - 18.0			
Cohesion (kN/m ²)	Negligible			
Angle of Internal Friction (φ)	30°- 40°			
Coefficient of Consolidation C_v (cm ² /sec)	1.75 x 10 ⁻⁵ - 2.01 x 10 ⁻³			
Compression index C _e	0.05-0.4			
Permeability (cm/sec)	$8 \times 10^{-6} - 7 \times 10^{-4}$			
Paritcle Size Distribution (% of materials)				
Clay size fraction	1 - 10			
Silt size fraction	8 - 85			
Sand size fraction	7 - 90			
Gravel size fraction	0 - 10			
Coefficient of Uniformity	3.1-10.7			

Construction Practice

- Clearing and Grubbing
- Stripping and storing of top soil
- Setting out limits
- Dewatering if any
- Preparation of Ground supporting embankment
 - Loosing and compaction
 - Drainage layers/Capillary cut off
 - Geotextiles
 - Bottom ash

Handling and transportation

- Transported to site
- Excess of moisture
 - Change of lifting areas
- Stockpiling
 - shall be avoided; if not
- Adequate moisture
- Protection cover
- » Polythene sheet
- » Earth cover

Spreading and compaction

- Provision of side cover with core
- Compaction
 - Small vibratory compactor 100 150 mm
 - Medium weight roller 250 mm
 - Vibratory rollers
- Up to 400 mm
- Initial two passes shall be without vibration
- Static roller
 - Not more than 200 mm
 - Cover soil maximum particle size 50 mm